Skip to main content

Advertisement

Log in

Frying oils with high natural or added antioxidants content, which protect against postprandial oxidative stress, also protect against DNA oxidation damage

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Using sunflower oil as frying oil increases postprandial oxidative stress, which is considered the main endogenous source of DNA oxidative damage. We aimed to test whether the protective effect of virgin olive oil and oil models with added antioxidants against postprandial oxidative stress may also protect against DNA oxidative damage.

Methods

Twenty obese people received four breakfasts following a randomized crossover design consisting of different oils [virgin olive oil (VOO), sunflower oil (SFO), and a mixed seed oil (SFO/canola oil) with added dimethylpolysiloxane (SOX) or natural antioxidants from olives (SOP)], which were subjected to 20 heating cycles.

Results

We observed the postprandial increase in the mRNA levels of p53, OGG1, POLB, and GADD45b after the intake of the breakfast prepared with SFO and SOX, and an increase in the expression of MDM2, APEX1, and XPC after the intake of the breakfast prepared with SFO, whereas no significant changes at the postprandial state were observed after the intake of the other breakfasts (all p values <0.05). We observed lower 8-OHdG postprandial levels after the intake of the breakfast prepared with VOO and SOP than after the intake of the breakfast prepared with SFO and SOX (all p values <0.05).

Conclusions

Our results support the beneficial effect on DNA oxidation damage of virgin olive oil and the oil models with added antioxidants, as compared to the detrimental use of sunflower oil, which induces p53-dependent DNA repair pathway activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Casal S, Malheiro R, Sendas A, Oliveira BP, Pereira JA (2010) Olive oil stability under deep-frying conditions. Food Chem Toxicol 48:2972–2979

    Article  CAS  Google Scholar 

  2. Quiles JL, Ramâirez-Tortosa MC, Yaqoob P (2006) Olive oil and health. CABI, Wallingford

    Book  Google Scholar 

  3. Velasco J, Marmesat S, Bordeaux O, Marquez-Ruiz G, Dobarganes C (2004) Formation and evolution of monoepoxy fatty acids in thermoxidized olive and sunflower oils and quantitation in used frying oils from restaurants and fried-food outlets. J Agric Food Chem 52:4438–4443

    Article  CAS  Google Scholar 

  4. Soriguer F, Rojo-Martinez G, Dobarganes MC, Garcia Almeida JM, Esteva I, Beltran M, Ruiz De Adana MS, Tinahones F, Gomez-Zumaquero JM, Garcia-Fuentes E, Gonzalez-Romero S (2003) Hypertension is related to the degradation of dietary frying oils. Am J Clin Nutr 78:1092–1097

    CAS  Google Scholar 

  5. Williams MJ, Sutherland WH, McCormick MP, de Jong SA, Walker RJ, Wilkins GT (1999) Impaired endothelial function following a meal rich in used cooking fat. J Am Coll Cardiol 33:1050–1055

    Article  CAS  Google Scholar 

  6. Perez-Herrera A, Delgado-Lista J, Torres-Sanchez LA, Rangel-Zuniga OA, Camargo A, Moreno-Navarrete JM, Garcia-Olid B, Quintana-Navarro GM, Alcala-Diaz JF, Munoz-Lopez C, Lopez-Segura F, Fernandez-Real JM, Luque de Castro MD, Lopez-Miranda J, Perez-Jimenez F (2012) The postprandial inflammatory response after ingestion of heated oils in obese persons is reduced by the presence of phenol compounds. Mol Nutr Food Res 56:510–514. doi:10.1002/mnfr.201100533

    Article  CAS  Google Scholar 

  7. Perez-Herrera A, Rangel-Zuniga OA, Delgado-Lista J, Marin C, Perez-Martinez P, Tasset I, Tunez I, Quintana-Navarro GM, Lopez-Segura F, Luque de Castro MD, Lopez-Miranda J, Camargo A, Perez-Jimenez F (2013) The antioxidants in oils heated at frying temperature, whether natural or added, could protect against postprandial oxidative stress in obese people. Food Chem 138:2250–2259. doi:10.1016/j.foodchem.2012.12.023S0308-8146(12)01916-4

    Article  CAS  Google Scholar 

  8. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8:722–728

    Article  CAS  Google Scholar 

  9. Singh R, Devi S, Gollen R (2015) Role of free radical in atherosclerosis, diabetes and dyslipidaemia: larger-than-life. Diabetes Metab Res Rev 31:113–126

    Article  CAS  Google Scholar 

  10. Inoguchi T, Nawata H (2005) NAD(P)H oxidase activation: a potential target mechanism for diabetic vascular complications, progressive beta-cell dysfunction and metabolic syndrome. Curr Drug Targets 6:495–501

    Article  CAS  Google Scholar 

  11. Durackova Z (2010) Some current insights into oxidative stress. Physiol Res Acad Sci Bohemoslov 59:459–469

    CAS  Google Scholar 

  12. Cardona F, Tunez I, Tasset I, Montilla P, Collantes E, Tinahones FJ (2008) Fat overload aggravates oxidative stress in patients with the metabolic syndrome. Eur J Clin Investig 38:510–515

    Article  CAS  Google Scholar 

  13. Devaraj S, Wang-Polagruto J, Polagruto J, Keen CL, Jialal I (2008) High-fat, energy-dense, fast-food-style breakfast results in an increase in oxidative stress in metabolic syndrome. Metab Clin Exp 57:867–870

    Article  CAS  Google Scholar 

  14. Ceriello A (2000) The post-prandial state and cardiovascular disease: relevance to diabetes mellitus. Diabetes Metab Res Rev 16:125–132

    Article  CAS  Google Scholar 

  15. Lopez-Miranda J, Marin C (2010) Dietary, physiological, and genetic impacts on postprandial lipid metabolism. In: Fat detection: taste, texture, and post ingestive effects. Taylor & Francis Group, LLC., Boca Raton, FL

  16. Matsuda M, Shimomura I (2013) Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract 7:e330–e341

    Article  Google Scholar 

  17. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. Faseb J 17:1195–1214

    Article  CAS  Google Scholar 

  18. Izumi T, Wiederhold LR, Roy G, Roy R, Jaiswal A, Bhakat KK, Mitra S, Hazra TK (2003) Mammalian DNA base excision repair proteins: their interactions and role in repair of oxidative DNA damage. Toxicology 193:43–65. doi:10.1016/S0300-483X(03)00289-0

    Article  CAS  Google Scholar 

  19. Mitra S, Boldogh I, Izumi T, Hazra TK (2001) Complexities of the DNA base excision repair pathway for repair of oxidative DNA damage. Environ Mol Mutagen 38:180–190. doi:10.1002/em.1070

    Article  CAS  Google Scholar 

  20. Kuchino Y, Mori F, Kasai H, Inoue H, Iwai S, Miura K, Ohtsuka E, Nishimura S (1987) Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature 327:77–79

    Article  CAS  Google Scholar 

  21. Shibutani S, Takeshita M, Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349:431–434

    Article  CAS  Google Scholar 

  22. Delaney S, Jarem DA, Volle CB, Yennie CJ (2012) Chemical and biological consequences of oxidatively damaged guanine in DNA. Free Radic Res 46:420–441

    Article  CAS  Google Scholar 

  23. Engelbergs J, Thomale J, Rajewsky MF (2000) Role of DNA repair in carcinogen-induced ras mutation. Mutat Res 450:139–153

    Article  CAS  Google Scholar 

  24. Kawanishi S, Hiraku Y, Oikawa S (2001) Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutat Res 488:65–76

    Article  CAS  Google Scholar 

  25. Gutierrez-Mariscal FM, Yubero-Serrano EM, Rangel-Zuniga OA, Marin C, Garcia-Rios A, Perez-Martinez P, Delgado-Lista J, Malagon MM, Tinahones FJ, Perez-Jimenez F, Lopez-Miranda J (2014) Postprandial activation of P53-dependent DNA repair is modified by mediterranean diet supplemented with coenzyme Q10 in elderly subjects. J Gerontol A Biol Sci Med Sci 69(7):886–893

    Article  CAS  Google Scholar 

  26. Guallar-Castillon P, Rodriguez-Artalejo F, Fornes NS, Banegas JR, Etxezarreta PA, Ardanaz E, Barricarte A, Chirlaque MD, Iraeta MD, Larranaga NL, Losada A, Mendez M, Martinez C, Quiros JR, Navarro C, Jakszyn P, Sanchez MJ, Tormo MJ, Gonzalez CA (2007) Intake of fried foods is associated with obesity in the cohort of Spanish adults from the European prospective investigation into cancer and nutrition. Am J Clin Nutr 86:198–205

    CAS  Google Scholar 

  27. James WP (2008) WHO recognition of the global obesity epidemic. Int J Obes 32(Suppl 7):S120–S126

    Article  Google Scholar 

  28. Armutcu F, Ataymen M, Atmaca H, Gurel A (2008) Oxidative stress markers, C-reactive protein and heat shock protein 70 levels in subjects with metabolic syndrome. Clin Chem Lab Med 46:785–790

    Article  CAS  Google Scholar 

  29. Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28:49–55

    CAS  Google Scholar 

  30. Giron MV, Ruiz-Jimenez J, Luque de Castro MD (2009) Dependence of fatty-acid composition of edible oils on their enrichment in olive phenols. J Agric Food Chem 57:2797–2802. doi:10.1021/jf803455f

    Article  CAS  Google Scholar 

  31. Kawai K, Li S, Kasai H (2007) Accurate measurement of 8-OH-Dg and 8-OH-Gua in mouse DNA, urine and serum: effects of X-ray irradiation. Genes Environ 29:107–114

    Article  CAS  Google Scholar 

  32. Brown RK, McBurney A, Lunec J, Kelly FJ (1995) Oxidative damage to DNA in patients with cystic fibrosis. Free Radic Biol Med 18:801–806

    Article  CAS  Google Scholar 

  33. Borrego S, Vazquez A, Dasi F, Cerda C, Iradi A, Tormos C, Sanchez JM, Bagan L, Boix J, Zaragoza C, Camps J, Saez G (2013) Oxidative stress and DNA damage in human gastric carcinoma: 8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG) as a possible tumor marker. Int J Mol Sci 14:3467–3486

    Article  CAS  Google Scholar 

  34. Espinosa O, Jimenez-Almazan J, Chaves FJ, Tormos MC, Clapes S, Iradi A, Salvador A, Fandos M, Redon J, Saez GT (2007) Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG), a reliable oxidative stress marker in hypertension. Free Radic Res 41:546–554

    Article  CAS  Google Scholar 

  35. Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev 6:909–923

    Article  CAS  Google Scholar 

  36. Petkovic J, Zegura B, Stevanovic M, Drnovsek N, Uskokovic D, Novak S, Filipic M (2011) DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology 5:341–353

    Article  CAS  Google Scholar 

  37. Straser A, Filipic M, Zegura B (2011) Genotoxic effects of the cyanobacterial hepatotoxin cylindrospermopsin in the HepG2 cell line. Arch Toxicol 85:1617–1626

    Article  CAS  Google Scholar 

  38. Smith ML, Ford JM, Hollander MC, Bortnick RA, Amundson SA, Seo YR, Deng CX, Hanawalt PC, Fornace AJ Jr (2000) p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 20:3705–3714

    Article  CAS  Google Scholar 

  39. Zhan Q (2005) Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage. Mutat Res 569:133–143

    Article  CAS  Google Scholar 

  40. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  CAS  Google Scholar 

  41. Foster JS, Henley DC, Bukovsky A, Seth P, Wimalasena J (2001) Multifaceted regulation of cell cycle progression by estrogen: regulation of Cdk inhibitors and Cdc25A independent of cyclin D1-Cdk4 function. Mol Cell Biol 21:794–810

    Article  CAS  Google Scholar 

  42. Brooks CL, Gu W (2004) Dynamics in the p53-Mdm2 ubiquitination pathway. Cell Cycle (Georgetown, Tex) 3:895–899

    CAS  Google Scholar 

  43. Stommel JM, Wahl GM (2005) A new twist in the feedback loop: stress-activated MDM2 destabilization is required for p53 activation. Cell cycle (Georgetown, Tex) 4:411–417

    Article  CAS  Google Scholar 

  44. Adimoolam S, Ford JM (2003) p53 and regulation of DNA damage recognition during nucleotide excision repair. DNA Rep 2:947–954

    Article  CAS  Google Scholar 

  45. Seo YR, Jung HJ (2004) The potential roles of p53 tumor suppressor in nucleotide excision repair (NER) and base excision repair (BER). Exp Mol Med 36:505–509

    Article  CAS  Google Scholar 

  46. Lee HW, Lee HJ, Hong CM, Baker DJ, Bhatia R, O’Connor TR (2007) Monitoring repair of DNA damage in cell lines and human peripheral blood mononuclear cells. Anal Biochem 365:246–259

    Article  CAS  Google Scholar 

  47. Fujihara J, Soejima M, Yasuda T, Koda Y, Kunito T, Iwata H, Tanabe S, Takeshita H (2011) Polymorphic trial in oxidative damage of arsenic exposed vietnamese. Toxicol Appl Pharmacol 256:174–178

    Article  CAS  Google Scholar 

  48. Hinhumpatch P, Navasumrit P, Chaisatra K, Promvijit J, Mahidol C, Ruchirawat M (2013) Oxidative DNA damage and repair in children exposed to low levels of arsenic in utero and during early childhood: application of salivary and urinary biomarkers. Toxicol Appl Pharmacol 273:569–579

    Article  CAS  Google Scholar 

  49. Pizzino G, Bitto A, Interdonato M, Galfo F, Irrera N, Mecchio A, Pallio G, Ramistella V, De Luca F, Minutoli L, Squadrito F, Altavilla D (2014) Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy). Redox Biol 2:686–693

    Article  CAS  Google Scholar 

  50. Fortini P, Pascucci B, Parlanti E, D’Errico M, Simonelli V, Dogliotti E (2003) The base excision repair: mechanisms and its relevance for cancer susceptibility. Biochimie 85:1053–1071

    Article  CAS  Google Scholar 

  51. Klungland A, Bjelland S (2007) Oxidative damage to purines in DNA: role of mammalian Ogg1. DNA Rep 6:481–488

    Article  CAS  Google Scholar 

  52. Pei DS, Yang XJ, Liu W, Guikema JE, Schrader CE, Strauss PR (2011) A novel regulatory circuit in base excision repair involving AP endonuclease 1, Creb1 and DNA polymerase beta. Nucleic Acids Res 39:3156–3165

    Article  CAS  Google Scholar 

  53. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health 27:120–139

    Article  CAS  Google Scholar 

  54. Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The CIBEROBN is an initiative of the Instituto de Salud Carlos III, Madrid, Spain. This study supported in part by research grants from the Spanish Ministry of Science and Innovation (AGL 2004-07907, AGL 2006-01979, and AGL 2009-12270 to J. L.-M., SAF07-62005 to F. P.-J. and FIS PI10/01041 to P. P.-M., PI10/02412 and PI13/00619 to F. P.-J.); Consejeria de Economia, Innovacion y Ciencia, Proyectos de Investigacion de Excelencia, Junta de Andalucia (P06-CTS-01425 to J. L.-M., CTS5015 and AGR922 to F. P.-J.); Consejeria de Salud, Junta de Andalucia (06/128, 07/43, and PI0193/09 to J. L.-M, 06/129 to F. P.-J., 06/127 to C. M.-H., PI-0252/09 to J. D.-L., and PI-0058/10 to P. P.-M.); PI/13/01848; GVA-ACOM2012/238; PI10/OO802/CB12/03/30016 to GS; Fondo Europeo de Desarrollo Regional (FEDER). Antonio Camargo is supported by an ISCIII research contract (Programa Miguel-Servet CP14/00114). We would also like to thank José Linares from DEOLEO, S. A., for providing the sunflower oil used in this research, and the Catering School of Bodegas Campos in Cordoba, Spain, for cooperating in the standardized heating process of the four oils used in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Camargo.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Francisco Perez-Jimenez and Antonio Camargo have contributed equally in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangel-Zuñiga, O.A., Haro, C., Tormos, C. et al. Frying oils with high natural or added antioxidants content, which protect against postprandial oxidative stress, also protect against DNA oxidation damage. Eur J Nutr 56, 1597–1607 (2017). https://doi.org/10.1007/s00394-016-1205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1205-1

Keywords

Navigation