Skip to main content

Advertisement

Log in

Selenium-enriched Spirulina protects INS-1E pancreatic beta cells from human islet amyloid polypeptide-induced apoptosis through suppression of ROS-mediated mitochondrial dysfunction and PI3/AKT pathway

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Human islet amyloid polypeptide (hIAPP) aggregation is linked to loss of pancreatic beta cells in type 2 diabetes, in part due to oxidative stress. Currently, little is known about the effects of selenium-enriched Spirulina on beta cells with the presence of hIAPP. In this study, INS-1E rat insulinoma cells were used as a model to evaluate in vitro protective effects of Se-enriched Spirulina extract (Se-SE) against hIAPP-induced cell death, as well as the underlying mechanisms.

Methods

Flow cytometric analysis was used to evaluate cell apoptosis, mitochondrial membrane potential (ΔΨm) and ROS generation. Caspase activity was measured using a fluorometric method. Western blotting was applied to detect protein expression.

Results

Our results showed that exposure of INS-1E cells to hIAPP resulted in cell viability loss, LDH release and appearance of sub-G peak. However, cytotoxicity of hIAPP was significantly attenuated by co-treatment with Se-SE. Se-SE also inhibited hIAPP-induced activation of caspase-3, -8 and -9. Additionally, hIAPP-induced accumulation of ROS and superoxide was suppressed by co-treatment with Se-SE. Moreover, Se-SE was able to prevent hIAPP-induced depletion of ΔΨm and intracellular ATP, reduction in mitochondrial mass, changes in the expression of Bcl-2 family members, release of mitochondrial apoptogenic factors. Furthermore, hIAPP-mediated AKT inhibition was restored by co-treatment with Se-SE.

Conclusion

Our results showed that Se-SE protects INS-1E cells from hIAPP-induced cell death through preventing ROS overproduction, mitochondrial dysfunction and modulating PI3K/AKT pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH (1987) Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci USA 84:3881–3885

    Article  CAS  Google Scholar 

  2. Zraika S, Hull RL, Udayasankar J, Aston-Mourney K, Subramanian SL, Kisilevsky R, Szarek WA, Kahn SE (2009) Oxidative stress is induced by islet amyloid formation and time-dependently mediates amyloid-induced beta cell apoptosis. Diabetologia 52:626–635

    Article  CAS  Google Scholar 

  3. Cao P, Marek P, Noor H, Patsalo V, Tu LH, Wang H, Abedini A, Raleigh DP (2013) Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett 587:1106–1118

    Article  CAS  Google Scholar 

  4. Gebre-Medhin S, Olofsson C, Mulder H (2000) Islet amyloid polypeptide in the islets of Langerhans: friend or foe? Diabetologia 43:687–695

    Article  CAS  Google Scholar 

  5. Haataja L, Gurlo T, Huang CJ, Butler PC (2008) Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 29:303–316

    Article  CAS  Google Scholar 

  6. Abedini A, Schmidt AM (2013) Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett 587:1119–1127

    Article  CAS  Google Scholar 

  7. Lin CY, Gurlo T, Kayed R, Butler AE, Haataja L, Glabe CG, Butler PC (2007) Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP-induced beta-cell apoptosis in h-IAPP transgenic mice. Diabetes 56:1324–1332

    Article  CAS  Google Scholar 

  8. Zhao HL, Lai FM, Tong PC, Zhong DR, Yang D, Tomlinson B, Chan JC (2003) Prevalence and clinicopathological characteristics of islet amyloid in Chinese patients with type 2 diabetes. Diabetes 52:2759–2766

    Article  CAS  Google Scholar 

  9. Hoppener JW, Lips CJ (2006) Role of islet amyloid in type 2 diabetes mellitus. Int J Biochem Cell Biol 38:726–736

    Article  Google Scholar 

  10. Li XL, Chen T, Wong YS, Xu G, Fan RR, Zhao HL, Chan JC (2011) Involvement of mitochondrial dysfunction in human islet amyloid polypeptide-induced apoptosis in INS-1E pancreatic beta cells: an effect attenuated by phycocyanin. Int J Biochem Cell Biol 43:525–534

    Article  CAS  Google Scholar 

  11. Chen T, Wong YS (2009) Selenocystine induces caspase-independent apoptosis in MCF-7 human breast carcinoma cells with involvement of p53 phosphorylation and reactive oxygen species generation. Int J Biochem Cell Biol 41:666–676

    Article  CAS  Google Scholar 

  12. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  Google Scholar 

  13. McNeill JH, Delgatty HLM, Battell ML (1991) Insulin like effects of sodium selenate in streptozotocin. Diabetes 40:1675–1678

    Article  CAS  Google Scholar 

  14. Mueller AS, Pallauf J (2006) Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem 17:548–560

    Article  CAS  Google Scholar 

  15. Kornhauser C, Garcia-Ramirez JR, Wrobel K, Perez-Luque EL, Garay-Sevilla ME (2008) Serum selenium and glutathione peroxidase concentrations in type 2 diabetes mellitus patients. Prim Care Diabetes 2:81–85

    Article  Google Scholar 

  16. Faure P, Ramon O, Favier A, Halimi S (2004) Selenium supplementation decreases nuclear factor-kappa B activity in peripheral blood mononuclear cells from type 2 diabetic patients. Eur J Clin Invest 34:475–481

    Article  CAS  Google Scholar 

  17. Rajpathak S, Rimm E, Morris JS, Hu F (2005) Toenail selenium and cardiovascular disease in men with diabetes. J Am Coll Nutr 24:250–256

    Article  CAS  Google Scholar 

  18. Kiersztan A, Lukasinska I, Baranska A, Lebiedzinska M, Nagalski A, Derlacz RA, Bryla J (2007) Differential effects of selenium compounds on glucose synthesis in rabbit kidney-cortex tubules and hepatocytes. In vitro and in vivo studies. J Inorg Biochem 101:493–505

    Article  CAS  Google Scholar 

  19. Campanella L, Crescentini G, Avino P (1999) Chemical composition and nutritional evaluation of some natural and commercial food products based on Spirulina. Analusis 27:533–540

    Article  Google Scholar 

  20. Kulshreshtha A, Zacharia AJ, Jarouliya U, Bhadauriya P, Prasad GB, Bisen PS (2008) Spirulina in health care management. Curr Pharm Biotechnol 9:400–405

    Article  CAS  Google Scholar 

  21. Chen T, Wong YS (2008) In vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium-enriched Spirulina platensis. J Agric Food Chem 56:4352–4358

    Article  CAS  Google Scholar 

  22. Parikh P, Mani U, Iyer U (2001) Role of Spirulina in the control of glycemia and lipidemia in type 2 diabetes mellitus. J Med Food 4:193–199

    Article  Google Scholar 

  23. Rodriguez-Hernandez A, Ble-Castillo JL, Juarez-Oropeza MA, Diaz-Zagoya JC (2001) Spirulina maxima prevents fatty liver formation in CD-1 male and female mice with experimental diabetes. Life Sci 69:1029–1037

    Article  CAS  Google Scholar 

  24. Chen T, Wong YS, Zheng W (2006) Purification and characterization of selenium-containing phycocyanin from selenium-enriched Spirulina platensis. Phytochemistry 67:2424–2430

    Article  CAS  Google Scholar 

  25. Chen T, Zheng W, Wong YS, Yang F, Bai Y (2006) Accumulation of selenium in mixotrophic culture of Spirulina platensis on glucose. Bioresour Technol 97:2260–2265

    Article  CAS  Google Scholar 

  26. Chen TF, Zheng WJ, Wong YS, Yang F (2008) Selenium-induced changes in activities of antioxidant enzymes and content of photosynthetic pigments in Spirulina platensis. J Integr Plant Biol 50:40–48

    Article  CAS  Google Scholar 

  27. Konarkowska B, Aitken JF, Kistler J, Zhang S, Cooper GJ (2006) The aggregation potential of human amylin determines its cytotoxicity towards islet beta-cells. FEBS J 273:3614–3624

    Article  CAS  Google Scholar 

  28. Silva R, Carmo H, Dinis-Oliveira R, Cordeiro-da-Silva A, Lima SC, Carvalho F, Bastos M de L, Remiao F (2011) In vitro study of P-glycoprotein induction as an antidotal pathway to prevent cytotoxicity in Caco-2 cells. Arch Toxicol 85:315–326

    Article  CAS  Google Scholar 

  29. McFarland AJ, Anoopkumar-Dukie S, Perkins AV, Davey AK, Grant GD (2012) Inhibition of autophagy by 3-methyladenine protects 1321N1 astrocytoma cells against pyocyanin- and 1-hydroxyphenazine-induced toxicity. Arch Toxicol 86:275–284

    Article  CAS  Google Scholar 

  30. Margineantu DH, Emerson CB, Diaz D, Hockenbery DM (2007) Hsp90 inhibition decreases mitochondrial protein turnover. PLoS One 2:e1066

    Article  Google Scholar 

  31. Chen T, Wong YS (2008) Selenocystine induces apoptosis of A375 human melanoma cells by activating ROS-mediated mitochondrial pathway and p53 phosphorylation. Cell Mol Life Sci 65:2763–2775

    Article  CAS  Google Scholar 

  32. Chen M, Liu B, Gao Q, Zhuo Y, Ge J (2010) Mitochondria-targeted peptide MTP-131 alleviates mitochondrial dysfunction and oxidative damage in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 52:7027–7037

    Article  Google Scholar 

  33. Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183

    Article  CAS  Google Scholar 

  34. Chen T, Wong YS, Zheng W (2009) Induction of G1 cell cycle arrest and mitochondria-mediated apoptosis in MCF-7 human breast carcinoma cells by selenium-enriched Spirulina extract. Biomed Pharmacother. doi:10.1016/j.biopha.2009.09.006

    Google Scholar 

  35. Li XL, Xu G, Chen T, Wong YS, Zhao HL, Fan RR, Gu XM, Tong PC, Chan JC (2009) Phycocyanin protects INS-1E pancreatic beta cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and modulating JNK and p38 mitogen-activated protein kinase pathways. Int J Biochem Cell Biol 41:1526–1535

    Article  CAS  Google Scholar 

  36. Zhang S, Liu H, Yu H, Cooper GJ (2008) Fas-associated death receptor signaling evoked by human amylin in islet beta-cells. Diabetes 57:348–356

    Article  CAS  Google Scholar 

  37. Kuo KL, Lin WC, Ho IL, Chang HC, Lee PY, Chung YT, Hsieh JT, Pu YS, Shi CS, Huang KH (2013) 2-Methoxyestradiol induces mitotic arrest, apoptosis, and synergistic cytotoxicity with arsenic trioxide in human urothelial carcinoma cells. PLoS ONE 8:e68703

    Article  CAS  Google Scholar 

  38. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273:2926–2930

    Article  CAS  Google Scholar 

  39. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    Article  CAS  Google Scholar 

  40. Choksi KB, Boylston WH, Rabek JP, Widger WR, Papaconstantinou J (2004) Oxidatively damaged proteins of heart mitochondrial electron transport complexes. Biochim Biophys Acta 1688:95–101

    Article  CAS  Google Scholar 

  41. Janciauskiene S, Ahren B (2000) Fibrillar islet amyloid polypeptide differentially affects oxidative mechanisms and lipoprotein uptake in correlation with cytotoxicity in two insulin-producing cell lines. Biochem Biophys Res Commun 267:619–625

    Article  CAS  Google Scholar 

  42. Castera L, Hatzfeld-Charbonnier AS, Ballot C, Charbonnel F, Dhuiege E, Velu T, Formstecher P, Mortier L, Marchetti P (2009) Apoptosis-related mitochondrial dysfunction defines human monocyte-derived dendritic cells with impaired immuno-stimulatory capacities. J Cell Mol Med 13:1321–1335

    Article  CAS  Google Scholar 

  43. Galluzzi L, Morselli E, Kepp O, Kroemer G (2009) Targeting post-mitochondrial effectors of apoptosis for neuroprotection. Biochim Biophys Acta 1787:402–413

    Article  CAS  Google Scholar 

  44. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  CAS  Google Scholar 

  45. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292:1728–1731

    Article  CAS  Google Scholar 

  46. Elghazi L, Bernal-Mizrachi E (2009) Akt and PTEN: beta-cell mass and pancreas plasticity. Trends Endocrinol Metab 20:243–251

    Article  CAS  Google Scholar 

  47. Marzetti E, Calvani R, Cesari M, Buford TW, Lorenzi M, Behnke BJ, Leeuwenburgh C (2013) Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Int J Biochem Cell Biol 45:2288–2301

    Article  CAS  Google Scholar 

  48. Tuttle RL, Gill NS, Pugh W, Lee JP, Koeberlein B, Furth EE, Polonsky KS, Naji A, Birnbaum MJ (2001) Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nat Med 7:1133–1137

    Article  CAS  Google Scholar 

  49. Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509–517

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Hong Kong Government Research Grant Committee, Hong Kong Foundation for Research and Development in Diabetes, the Natural Science Foundation of China and Guangdong Province, Program for New Century Excellent Talents in University and China Postdoctoral Science Foundation.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana C. N. Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XL., Wong, YS., Xu, G. et al. Selenium-enriched Spirulina protects INS-1E pancreatic beta cells from human islet amyloid polypeptide-induced apoptosis through suppression of ROS-mediated mitochondrial dysfunction and PI3/AKT pathway. Eur J Nutr 54, 509–522 (2015). https://doi.org/10.1007/s00394-014-0732-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-014-0732-x

Keywords

Navigation