Skip to main content

Advertisement

Log in

Maternal diet, bioactive molecules, and exercising as reprogramming tools of metabolic programming

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Nutrition and lifestyle, particularly over-nutrition and lack of exercise, promote the progression and pathogenesis of obesity and metabolic diseases. Nutrition is likely the most important environmental factor that modulates the expression of genes involved in metabolic pathways and a variety of phenotypes associated with obesity and diabetes. During pregnancy, diet is a major factor that influences the organ developmental plasticity of the foetus. Experimental evidence shows that nutritional factors, including energy, fatty acids, protein, micronutrients, and folate, affect various aspects of metabolic programming. Different epigenetic mechanisms that are elicited by bioactive factors in early critical developmental ages affect the susceptibility to several diseases in adulthood. The beneficial effects promoted by exercise training are well recognised, and physical exercise may be considered one of the more prominent non-pharmacological tools that can be used to attenuate metabolic programming and to consequently ameliorate the illness provoked by metabolic diseases and reduce the prevalence of obesity, type 2 diabetes, and cardiovascular diseases. Literature on the different outcomes of unbalanced diets and the beneficial effects of some bioactive molecules during gestation and lactation on the metabolic health of offspring, as well as the potential mechanisms underlying these effects, was reviewed. The importance of the combined effects of functional nutrition and exercise as reprogramming tools of metabolic programming is discussed in depth. Finally, this review provides recommendations to healthcare providers that may aid in the control of early programming in an attempt to optimise the health of the mother and child.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Colditz GA et al (1995) Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med 122(7):481–486

    CAS  Google Scholar 

  2. Haggarty P (2012) Nutrition and the epigenome. Prog Mol Biol Transl Sci 108:427–446

    CAS  Google Scholar 

  3. Hu FB et al (2003) Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA 289(14):1785–1791

    Google Scholar 

  4. Hu FB et al (2001) Physical activity and television watching in relation to risk for type 2 diabetes mellitus in men. Arch Intern Med 161(12):1542–1548

    CAS  Google Scholar 

  5. Barker DJ (1999) Fetal origins of cardiovascular disease. Ann Med 31(Suppl 1):3–6

    Google Scholar 

  6. Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20

    CAS  Google Scholar 

  7. Heijmans BT et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105(44):17046–17049

    CAS  Google Scholar 

  8. Burdge GC et al (2007) Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br J Nutr 97(6):1036–1046

    CAS  Google Scholar 

  9. Waterland RA, Michels KB (2007) Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 27:363–388

    CAS  Google Scholar 

  10. Szyf M (2012) The early-life social environment and DNA methylation. Clin Genet 81(4):341–349

    CAS  Google Scholar 

  11. Fernandez-Twinn DS, Ozanne SE (2006) Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiol Behav 88(3):234–243

    CAS  Google Scholar 

  12. Eberle C, Ament C (2012) Diabetic and metabolic programming: mechanisms altering the intrauterine milieu. ISRN Pediatr 2012:975685

    Google Scholar 

  13. Barker DJ, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1(8489):1077–1081

    CAS  Google Scholar 

  14. Attig L et al (2008) Study of hypothalamic leptin receptor expression in low-birth-weight piglets and effects of leptin supplementation on neonatal growth and development. Am J Physiol Endocrinol Metab 295(5):E1117–E1125

    CAS  Google Scholar 

  15. Attig L et al (2013) Postnatal leptin promotes organ maturation and development in IUGR piglets. PLoS One 8(5):e64616

    CAS  Google Scholar 

  16. Ozaki T et al (2001) Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J Physiol 530(Pt 1):141–152

    CAS  Google Scholar 

  17. Odegaard JI, Chawla A (2013) The immune system as a sensor of the metabolic state. Immunity 38(4):644–654

    CAS  Google Scholar 

  18. Sharkey D et al (2009) Maternal nutrient restriction during pregnancy differentially alters the unfolded protein response in adipose and renal tissue of obese juvenile offspring. FASEB J 23(5):1314–1324

    CAS  Google Scholar 

  19. Sharkey D et al (2009) Maternal nutrient restriction during early fetal kidney development attenuates the renal innate inflammatory response in obese young adult offspring. Am J Physiol Renal Physiol 297(5):F1199–F1207

    CAS  Google Scholar 

  20. Gnanalingham MG et al (2005) Differential effects of leptin administration on the abundance of UCP2 and glucocorticoid action during neonatal development. Am J Physiol Endocrinol Metab 289(6):E1093–E1100

    CAS  Google Scholar 

  21. Gnanalingham MG et al (2005) Tissue-specific effects of leptin administration on the abundance of mitochondrial proteins during neonatal development. J Endocrinol 187(1):81–88

    CAS  Google Scholar 

  22. Snoeck A et al (1990) Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate 57(2):107–118

    CAS  Google Scholar 

  23. Cottrell EC, Ozanne SE (2007) Developmental programming of energy balance and the metabolic syndrome. Proc Nutr Soc 66(2):198–206

    CAS  Google Scholar 

  24. Guan H et al (2005) Adipose tissue gene expression profiling reveals distinct molecular pathways that define visceral adiposity in offspring of maternal protein-restricted rats. Am J Physiol Endocrinol Metab 288(4):E663–E673

    CAS  Google Scholar 

  25. Boney CM et al (2005) Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115(3):e290–e296

    Google Scholar 

  26. Pettitt DJ et al (1987) Obesity in offspring of diabetic Pima Indian women despite normal birth weight. Diabetes Care 10(1):76–80

    CAS  Google Scholar 

  27. Dabelea D, Knowler WC, Pettitt DJ (2000) Effect of diabetes in pregnancy on offspring: follow-up research in the Pima Indians. J Matern Fetal Med 9(1):83–88

    CAS  Google Scholar 

  28. Shenkin A (2006) Micronutrients in health and disease. Postgrad Med J 82(971):559–567

    CAS  Google Scholar 

  29. Shenkin A (2006) The key role of micronutrients. Clin Nutr 25(1):1–13

    CAS  Google Scholar 

  30. Garcia OP, Long KZ, Rosado JL (2009) Impact of micronutrient deficiencies on obesity. Nutr Rev 67(10):559–572

    Google Scholar 

  31. Vaidya A et al (2008) Effects of antenatal multiple micronutrient supplementation on children’s weight and size at 2 years of age in Nepal: follow-up of a double-blind randomised controlled trial. Lancet 371(9611):492–499

    CAS  Google Scholar 

  32. Stewart CP et al (2009) Antenatal micronutrient supplementation reduces metabolic syndrome in 6- to 8-year-old children in rural Nepal. J Nutr 139(8):1575–1581

    CAS  Google Scholar 

  33. Fall CH et al (2003) Micronutrients and fetal growth. J Nutr 133(5 Suppl 2):1747S–1756S

    CAS  Google Scholar 

  34. Rao KR, Padmavathi IJ, Raghunath M (2012) Maternal micronutrient restriction programs the body adiposity, adipocyte function and lipid metabolism in offspring: a review. Rev Endocr Metab Disord 13(2):103–108

    CAS  Google Scholar 

  35. Padmavathi IJ et al (2009) Prenatal and perinatal zinc restriction: effects on body composition, glucose tolerance and insulin response in rat offspring. Exp Physiol 94(6):761–769

    CAS  Google Scholar 

  36. Padmavathi IJ et al (2010) Chronic maternal dietary chromium restriction modulates visceral adiposity: probable underlying mechanisms. Diabetes 59(1):98–104

    CAS  Google Scholar 

  37. Lewis RM et al (2002) Long-term programming of blood pressure by maternal dietary iron restriction in the rat. Br J Nutr 88(3):283–290

    CAS  Google Scholar 

  38. Lewis RM et al (2001) Effects of maternal iron restriction in the rat on blood pressure, glucose tolerance, and serum lipids in the 3-month-old offspring. Metab Clin Exp 50(5):562–567

    CAS  Google Scholar 

  39. Tomat A et al (2010) Exposure to zinc deficiency in fetal and postnatal life determines nitric oxide system activity and arterial blood pressure levels in adult rats. Br J Nutr 104(3):382–389

    CAS  Google Scholar 

  40. Tomat AL et al (2008) Moderate zinc restriction during fetal and postnatal growth of rats: effects on adult arterial blood pressure and kidney. Am J Physiol Regul Integr Comp Physiol 295(2):R543–R549

    CAS  Google Scholar 

  41. Tomat AL, Costa MDLA, Arranz CT (2011) Zinc restriction during different periods of life: influence in renal and cardiovascular diseases. Nutrition 27(4):392–398

    CAS  Google Scholar 

  42. Kumar KA et al (2013) Maternal dietary folate and/or vitamin B12 restrictions alter body composition (adiposity) and lipid metabolism in Wistar rat offspring. J Nutr Biochem 24(1):25–31

    CAS  Google Scholar 

  43. Venu L et al (2004) Maternal dietary vitamin restriction increases body fat content but not insulin resistance in WNIN rat offspring up to 6 months of age. Diabetologia 47(9):1493–1501

    CAS  Google Scholar 

  44. Kim KC, Friso S, Choi SW (2009) DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging. J Nutr Biochem 20(12):917–926

    CAS  Google Scholar 

  45. Crider KS, Bailey LB, Berry RJ (2011) Folic acid food fortification-its history, effect, concerns, and future directions. Nutrients 3(3):370–384

    Google Scholar 

  46. Chango A, Abdennebi-Najar L (2011) Folate metabolism pathway and Plasmodium falciparum malaria infection in pregnancy. Nutr Rev 69(1):34–40

    Google Scholar 

  47. Christian P et al (2010) Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. JAMA J Am Med Assoc 304(24):2716–2723

    CAS  Google Scholar 

  48. Christian P, Stewart CP (2010) Maternal micronutrient deficiency, fetal development, and the risk of chronic disease. J Nutr 140(3):437–445

    CAS  Google Scholar 

  49. Rosario JF, Gomez MP, Anbu P (2008) Does the maternal micronutrient deficiency (copper or zinc or vitamin E) modulate the expression of placental 11 beta hydroxysteroid dehydrogenase-2 per se predispose offspring to insulin resistance and hypertension in later life? Indian J Physiol Pharmacol 52(4):355–365

    CAS  Google Scholar 

  50. Hwang IS et al (1987) Fructose-induced insulin resistance and hypertension in rats. Hypertension 10(5):512–516

    CAS  Google Scholar 

  51. Sedova L et al (2007) Sucrose feeding during pregnancy and lactation elicits distinct metabolic response in offspring of an inbred genetic model of metabolic syndrome. Am J Physiol Endocrinol Metab 292(5):E1318–E1324

    CAS  Google Scholar 

  52. Lenders CM et al (1997) Gestational age and infant size at birth are associated with dietary sugar intake among pregnant adolescents. J Nutr 127(6):1113–1117

    CAS  Google Scholar 

  53. Schulze MB et al (2004) Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA J Am Med Assoc 292(8):927–934

    CAS  Google Scholar 

  54. Tzanetakou IP, Mikhailidis DP, Perrea DN (2011) Nutrition during pregnancy and the effect of carbohydrates on the offspring’s metabolic profile. In search of the “perfect maternal diet”. Open Cardiovasc Med J 5:103–109

    Google Scholar 

  55. Srinivasan M, Mahmood S, Patel MS (2013) Metabolic programming effects initiated in the suckling period predisposing for adult-onset obesity cannot be reversed by calorie restriction. Am J Physiol Endocrinol Metab 304(5):E486–E494

    CAS  Google Scholar 

  56. Patrelli TS et al (2012) Calcium supplementation and prevention of preeclampsia: a meta-analysis. J Matern Fetal Neonatal Med 25(12):2570–2574

    CAS  Google Scholar 

  57. Mikkelsen TB et al (2008) Association between a Mediterranean-type diet and risk of preterm birth among Danish women: a prospective cohort study. Acta Obstet Gynecol Scand 87(3):325–330

    CAS  Google Scholar 

  58. Haugen M et al (2008) Mediterranean-type diet and risk of preterm birth among women in the Norwegian Mother and Child Cohort Study (MoBa): a prospective cohort study. Acta Obstet Gynecol Scand 87(3):319–324

    Google Scholar 

  59. Barger MK (2010) Maternal nutrition and perinatal outcomes. J Midwifery Womens Health 55(6):502–511

    Google Scholar 

  60. Rao S et al (2001) Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune Maternal Nutrition Study. J Nutr 131(4):1217–1224

    CAS  Google Scholar 

  61. Dominguez-Salas P et al (2013) DNA methylation potential: dietary intake and blood concentrations of one-carbon metabolites and cofactors in rural African women. Am J Clin Nutr 97(6):1217–1227

    CAS  Google Scholar 

  62. Yajnik CS et al (2008) Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 51(1):29–38

    CAS  Google Scholar 

  63. Lewis SJ et al (2009) Body composition at age 9 years, maternal folate intake during pregnancy and methyltetrahydrofolate reductase (MTHFR) C677T genotype. Br J Nutr 102(4):493–496

    CAS  Google Scholar 

  64. Lee SJ et al (2005) DNMT3B polymorphisms and risk of primary lung cancer. Carcinogenesis 26(2):403–409

    CAS  Google Scholar 

  65. Luka Z et al (2011) Histone demethylase LSD1 is a folate-binding protein. Biochemistry 50(21):4750–4756

    CAS  Google Scholar 

  66. Chango A, Watkins D, Abdennebi-Najar L (2012) The importance of folate in health. In: Victor R Preedy (ed) B Vitamins and folate: chemistry, analysis, function and effects. Royal Society of Chemistry, UK, pp 734–753

  67. Kagan RM, Clarke S (1994) Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys 310(2):417–427

    CAS  Google Scholar 

  68. Stefanska B et al (2012) Epigenetic mechanisms in anti-cancer actions of bioactive food components—the implications in cancer prevention. Br J Pharmacol 167(2):279–297

    CAS  Google Scholar 

  69. Lubecka-Pietruszewska K et al (2013) Folic acid enforces DNA methylation-mediated transcriptional silencing of PTEN, APC and RARbeta2 tumour suppressor genes in breast cancer. Biochem Biophys Res Commun 430(2):623–628

    CAS  Google Scholar 

  70. Liu Z et al (2009) Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett 19(3):706–709

    Google Scholar 

  71. Bouchard L et al (2012) Placental adiponectin gene DNA methylation levels are associated with mothers’ blood glucose concentration. Diabetes 61(5):1272–1280

    CAS  Google Scholar 

  72. Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100(2):126–131

    CAS  Google Scholar 

  73. Armstrong RB (1979) Biochemistry : energy liberation and use. In: Strauss RH (ed) Sports Medicine and Physiology. W.B. Saunders, Philadelphia , pp 3–28

  74. Sung K, Bae S (2012) Effects of a regular walking exercise program on behavioral and biochemical aspects in elderly people with type II diabetes. Nurs Health Sci 14(4):438–445

    Google Scholar 

  75. Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts: how valid are they? Sports Med 39(6):469–490

    Google Scholar 

  76. Beneke R, Leithauser RM, Ochentel O (2011) Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform 6(1):8–24

    Google Scholar 

  77. Ahlborg G et al (1974) Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J Clin Invest 53(4):1080–1090

    CAS  Google Scholar 

  78. Bae JC et al (2012) Regular exercise is associated with a reduction in the risk of NAFLD and decreased liver enzymes in individuals with NAFLD independent of obesity in Korean adults. PLoS One 7(10):e46819

    CAS  Google Scholar 

  79. Dishman RK et al (2006) Neurobiology of exercise. Obesity (Silver Spring) 14(3):345–356

    CAS  Google Scholar 

  80. van Praag H (2008) Neurogenesis and exercise: past and future directions. Neuromol Med 10(2):128–140

    Google Scholar 

  81. Romijn JA et al (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol Endocrinol Metab 265:380–391

    Google Scholar 

  82. Romijn JA et al (1995) Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J Appl Physiol 79:1939–1945

    CAS  Google Scholar 

  83. Scomparin DX et al (2011) Low-Intensity swimming training after weaning improves glucose and lipid homeostasis in MSG hypothalamic obese mice. Endocr Res 36(2):83–90

    CAS  Google Scholar 

  84. Andreazzi AE et al (2009) Swimming exercise at weaning improves glycemic control and inhibits the onset of monosodium L-glutamate-obesity in mice. J Endocrinol 201(3):351–359

    CAS  Google Scholar 

  85. Achten J, Jeukendrup AE (2003) Maximal fat oxidation during exercise in trained men. Int J Sports Med 24(8):603–608

    CAS  Google Scholar 

  86. Romijn JA et al (1995) Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J Appl Physiol 79:1939–1945

    CAS  Google Scholar 

  87. Scomparin DX et al (2006) Swim training applied at early age is critical to adrenal medulla catecholamine content and to attenuate monosodium L-glutamate-obesity onset in mice. Life Sci 79(22):2151–2156

    CAS  Google Scholar 

  88. Calegari VC et al (2011) Endurance training activates AMP-activated protein kinase, increases expression of uncoupling protein 2 and reduces insulin secretion from rat pancreatic islets. J Endocrinol 208(3):257–264

    CAS  Google Scholar 

  89. de Araujo ACC et al (2012) Similar health benefits of endurance and high-intensity interval training in obese children. PLoS One 7(8):e42747

    Google Scholar 

  90. Slentz CA et al (2007) Inactivity, exercise training and detraining, and plasma lipoproteins. STRRIDE: a randomized, controlled study of exercise intensity and amount. J Appl Physiol (1985) 103(2):432–442

    CAS  Google Scholar 

  91. Goh J, Ladiges WC (2013) A novel long term short interval physical activity regime improves body composition in mice. BMC Res Notes 6:66

    Google Scholar 

  92. de Carvalho Leite N et al (2013) Glycolytic and mitochondrial metabolism in pancreatic islets from MSG-treated obese rats subjected to swimming training. Cell Physiol Biochem 31(2–3):242–256

    Google Scholar 

  93. Pangrazi RP, Corbin CB (1990) Age as a factor relating to physical fitness test performance. Res Q Exerc Sport 61(4):410–414

    CAS  Google Scholar 

  94. Draganski B, May A (2008) Training-induced structural changes in the adult human brain. Behav Brain Res 192(1):137–142

    CAS  Google Scholar 

  95. Michelini LC (2007) The NTS and integration of cardiovascular control during exercise in normotensive and hypertensive individuals. Curr Hypertens Rep 9(3):214–221

    Google Scholar 

  96. Michelini LC (2007) Differential effects of vasopressinergic and oxytocinergic pre-autonomic neurons on circulatory control: reflex mechanisms and changes during exercise. Clin Exp Pharmacol Physiol 34(4):369–376

    CAS  Google Scholar 

  97. Barker DJ (1998) In utero programming of chronic disease. Clin Sci (Lond) 95(2):115–128

    CAS  Google Scholar 

  98. Vickers MH et al (2005) Neonatal leptin treatment reverses developmental programming. Endocrinology 146(10):4211–4216

    CAS  Google Scholar 

  99. Vega CC et al (2013) Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. Int J Obes (Lond). doi:10.1038/ijo.2013.150

  100. Oken E et al (2006) Associations of physical activity and inactivity before and during pregnancy with glucose tolerance. Obstet Gynecol 108(5):1200–1207

    Google Scholar 

  101. Richter EA, Derave W, Wojtaszewski JF (2001) Glucose, exercise and insulin: emerging concepts. J Physiol 535(Pt 2):313–322

    CAS  Google Scholar 

  102. Torun B, Viteri FE (1994) Influence of exercise on linear growth. Eur J Clin Nutr 48(Suppl 1):S186–S189

    Google Scholar 

  103. Cambri LT et al (2011) Metabolic responses to acute physical exercise in young rats recovered from fetal protein malnutrition with a fructose-rich diet. Lipids Health Dis 10:164

    CAS  Google Scholar 

  104. Rice B et al (1999) Effects of aerobic or resistance exercise and/or diet on glucose tolerance and plasma insulin levels in obese men. Diabetes Care 22(5):684–691

    CAS  Google Scholar 

  105. Kriska AM et al (2001) Physical activity, physical fitness, and insulin and glucose concentrations in an isolated Native Canadian population experiencing rapid lifestyle change. Diabetes Care 24(10):1787–1792

    CAS  Google Scholar 

  106. Kriska A (2000) Physical activity and the prevention of type 2 diabetes mellitus: how much for how long? Sports Med 29(3):147–151

    CAS  Google Scholar 

  107. de Oliveira JC et al (2013) Poor pubertal protein nutrition disturbs glucose-induced insulin secretion process in pancreatic islets and programs rats in adulthood to increase fat accumulation. J Endocrinol 216(2):195–206

    Google Scholar 

  108. Barella LF et al (2012) Early exposure to a high-fat diet has more drastic consequences on metabolism compared with exposure during adulthood in rats. Horm Metab Res 44(6):458–464

    CAS  Google Scholar 

  109. Wasinski F et al (2013) Exercise and caloric restriction alter the immune system of mice submitted to a high-fat diet. Mediators Inflamm 2013:395672

    Google Scholar 

  110. Kizaki T et al (2011) Voluntary exercise attenuates obesity-associated inflammation through ghrelin expressed in macrophages. Biochem Biophys Res Commun 413(3):454–459

    CAS  Google Scholar 

  111. Patterson CM, Levin BE (2008) Role of exercise in the central regulation of energy homeostasis and in the prevention of obesity. Neuroendocrinology 87(2):65–70

    CAS  Google Scholar 

  112. Gomez-Merino D et al (2007) Effects of chronic exercise on cytokine production in white adipose tissue and skeletal muscle of rats. Cytokine 40(1):23–29

    CAS  Google Scholar 

  113. Benrick A, Wallenius V, Asterholm IW (2012) Interleukin-6 mediates exercise-induced increase in insulin sensitivity in mice. Exp Physiol 97(11):1224–1235

    CAS  Google Scholar 

  114. Gray S, Kim JK (2011) New insights into insulin resistance in the diabetic heart. Trends Endocrinol Metab 22(10):394–403

    CAS  Google Scholar 

  115. Senn JJ et al (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51(12):3391–3399

    CAS  Google Scholar 

  116. Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol (1985) 98(4):1154–1162

    CAS  Google Scholar 

  117. Pedersen BK, Febbraio MA (2007) Point: interleukin-6 does have a beneficial role in insulin sensitivity and glucose homeostasis. J Appl Physiol (1985) 102(2):814–816

    CAS  Google Scholar 

  118. Fidalgo M et al. (2012) Programmed changes in the adult rat offspring caused by maternal protein restriction during gestation and lactation are attenuated by maternal moderate-low physical training. Br J Nutr 1:1–8

    Google Scholar 

  119. Gomez-Pinilla F et al (2011) Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci 33(3):383–390

    CAS  Google Scholar 

  120. Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med 37(9):737–763

    Google Scholar 

  121. Barres R et al (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15(3):405–411

    CAS  Google Scholar 

  122. Ronn T et al (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 9(6):e1003572

    Google Scholar 

  123. Abu-Farha M et al (2013) Proteomics analysis of human obesity reveals the epigenetic factor HDAC4 as a potential target for obesity. PLoS One 8(9):e75342

    CAS  Google Scholar 

  124. Nakajima K et al (2010) Exercise effects on methylation of ASC gene. Int J Sports Med 31(9):671–675

    CAS  Google Scholar 

  125. Elsner VR et al (2013) Exercise induces age-dependent changes on epigenetic parameters in rat hippocampus: a preliminary study. Exp Gerontol 48(2):136–139

    CAS  Google Scholar 

  126. Lovatel GA et al (2013) Treadmill exercise induces age-related changes in aversive memory, neuroinflammatory and epigenetic processes in the rat hippocampus. Neurobiol Learn Mem 101:94–102

    CAS  Google Scholar 

  127. Ronn T et al (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 9(6):e1003572

    Google Scholar 

  128. Ntanasis-Stathopoulos J et al (2013) Epigenetic regulation on gene expression induced by physical exercise. J Musculoskelet Neuronal Interact 13(2):133–146

    CAS  Google Scholar 

  129. Hopkins SA, Cutfield WS (2011) Exercise in pregnancy: weighing up the long-term impact on the next generation. Exerc Sport Sci Rev 39(3):120–127

    Google Scholar 

  130. Wallberg-Henriksson H, Rincon J, Zierath JR (1998) Exercise in the management of non-insulin-dependent diabetes mellitus. Sports Med 25(1):25–35

    CAS  Google Scholar 

  131. Seifert T, Secher NH (2011) Sympathetic influence on cerebral blood flow and metabolism during exercise in humans. Prog Neurobiol 95(3):406–426

    CAS  Google Scholar 

  132. Ivy JL (1997) Role of exercise training in the prevention and treatment of insulin resistance and non-insulin-dependent diabetes mellitus. Sports Med 24(5):321–336

    CAS  Google Scholar 

  133. Henriksen EJ (2002) Invited review: effects of acute exercise and exercise training on insulin resistance. J Appl Physiol 93(2):788–796

    CAS  Google Scholar 

  134. Bostrom P et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481(7382):463–468

    Google Scholar 

  135. Castillo-Quan JI (2012) From white to brown fat through the PGC-1alpha-dependent myokine irisin: implications for diabetes and obesity. Dis Model Mech 5(3):293–295

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of LaSalle Beauvais Institute, which permitted the visit of Prof. Dr. Paulo Cezar de Freitas Mathias in the research unit “Expression des Gènes et Régulation Epigénétique par l’Aliment” (EGEAL), who contributed to the preparation of this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latifa Abdennebi-Najar.

Additional information

Paulo C. F. Mathias and Ghada Elmhiri both have contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathias, P.C.F., Elmhiri, G., de Oliveira, J.C. et al. Maternal diet, bioactive molecules, and exercising as reprogramming tools of metabolic programming. Eur J Nutr 53, 711–722 (2014). https://doi.org/10.1007/s00394-014-0654-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-014-0654-7

Keywords

Navigation