Skip to main content

Advertisement

Log in

Regulation of iron metabolism in Hamp / mice in response to iron-deficient diet

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Hepcidin, the liver-secreted iron regulatory peptide, maintains systemic iron homeostasis in response to several stimuli including dietary iron levels and body iron status. In addition, iron metabolism is controlled by several local regulatory mechanisms including IRP and Hif-2α activities independently of hepcidin. However, the roles of these mechanisms and their interaction particularly in hepcidin-deficient individuals are not yet fully understood. We, therefore, aimed to explore whether Hamp disruption affects iron homeostatic responses to dietary iron deficiency.

Methods

Hepcidin1 knockout (Hamp /) mice and heterozygous littermates were fed with control or iron-deficient diet for 2 weeks. The expression of iron-related genes and proteins were determined by quantitative PCR and Western blot, respectively.

Results

Two-week iron-deficient diet feeding in Hamp / mice did not alter serum iron but significantly reduced liver non-heme iron levels. This was also associated with increased ferroportin protein expression in the duodenum and spleen, whereas decreased expression was found in the liver. In addition, significant inductive effects of iron-deficient diet on Dcytb and DMT1 mRNA expression in the duodenum were noted with more pronounced effects in Hamp / mice compared with controls.

Conclusions

Hamp / mice exhibited a more dramatic increase in the expression of iron transport machinery, which may be responsible for the unaltered serum iron levels upon iron-deficient diet feeding in these mice. Despite the lack of hepcidin, Hamp / mice can maintain a degree of iron homeostasis in response to altered dietary iron through several hepcidin-independent mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, Simpson RJ (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291(5509):1755–1759. doi:10.1126/science.1057206

    Article  CAS  Google Scholar 

  2. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488. doi:10.1038/41343

    Article  CAS  Google Scholar 

  3. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5(2):299–309

    Article  CAS  Google Scholar 

  4. Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403(6771):776–781. doi:10.1038/35001596

    Article  CAS  Google Scholar 

  5. Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275(26):19906–19912. doi:10.1074/jbc.M000713200

    Article  CAS  Google Scholar 

  6. Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21(2):195–199. doi:10.1038/5979

    Article  CAS  Google Scholar 

  7. Frazer DM, Wilkins SJ, Becker EM, Vulpe CD, McKie AT, Trinder D, Anderson GJ (2002) Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology 123(3):835–844

    Article  CAS  Google Scholar 

  8. Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276(11):7811–7819. doi:10.1074/jbc.M008923200

    Article  CAS  Google Scholar 

  9. Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, Beaumont C, Kahn A, Vaulont S (2002) The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110(7):1037–1044. doi:10.1172/jci15686

    CAS  Google Scholar 

  10. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306(5704):2090–2093. doi:10.1126/science.1104742

    Article  CAS  Google Scholar 

  11. Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C (2009) HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J Clin Invest 119(5):1159–1166. doi:10.1172/jci38499

    Article  CAS  Google Scholar 

  12. Shah YM, Matsubara T, Ito S, Yim SH, Gonzalez FJ (2009) Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab 9(2):152–164. doi:10.1016/j.cmet.2008.12.012

    Article  CAS  Google Scholar 

  13. Galy B, Ferring-Appel D, Kaden S, Grone HJ, Hentze MW (2008) Iron regulatory proteins are essential for intestinal function and control key iron absorption molecules in the duodenum. Cell Metab 7(1):79–85. doi:10.1016/j.cmet.2007.10.006

    Article  CAS  Google Scholar 

  14. Lesbordes-Brion JC, Viatte L, Bennoun M, Lou DQ, Ramey G, Houbron C, Hamard G, Kahn A, Vaulont S (2006) Targeted disruption of the hepcidin 1 gene results in severe hemochromatosis. Blood 108(4):1402–1405. doi:10.1182/blood-2006-02-003376

    Article  CAS  Google Scholar 

  15. Beutler E (1971) Red cell metabolism: a manual of biochemical methods. Grune & Stratton, New York

    Google Scholar 

  16. Foy AL, Williams HL, Cortell S, Conrad ME (1967) A modified procedure for the determination of nonheme iron in tissue. Anal Biochem 18:559–563

    Article  CAS  Google Scholar 

  17. Simpson RJ, Peters TJ (1990) Forms of soluble iron in mouse stomach and duodenal lumen: significance for mucosal uptake. Br J Nutr 63(1):79–89

    Article  CAS  Google Scholar 

  18. Masaratana P, Laftah AH, Latunde-Dada GO, Vaulont S, Simpson RJ, McKie AT (2011) Iron absorption in hepcidin1 knockout mice. Br J Nutr 105(11):1583–1591. doi:10.1017/s0007114510005507

    Article  CAS  Google Scholar 

  19. Galy B, Ferring D, Minana B, Bell O, Janser HG, Muckenthaler M, Schumann K, Hentze MW (2005) Altered body iron distribution and microcytosis in mice deficient in iron regulatory protein 2 (IRP2). Blood 106(7):2580–2589. doi:10.1182/blood-2005-04-1365

    Article  CAS  Google Scholar 

  20. Ferring-Appel D, Hentze MW, Galy B (2009) Cell-autonomous and systemic context-dependent functions of iron regulatory protein 2 in mammalian iron metabolism. Blood 113(3):679–687. doi:10.1182/blood-2008-05-155093

    Article  CAS  Google Scholar 

  21. Starzynski RR, Lipinski P, Drapier JC, Diet A, Smuda E, Bartlomiejczyk T, Gralak MA, Kruszewski M (2005) Down-regulation of iron regulatory protein 1 activities and expression in superoxide dismutase 1 knock-out mice is not associated with alterations in iron metabolism. J Biol Chem 280(6):4207–4212. doi:10.1074/jbc.M411055200

    Article  CAS  Google Scholar 

  22. Taylor M, Qu A, Anderson ER, Matsubara T, Martin A, Gonzalez FJ, Shah YM (2011) Hypoxia-inducible factor-2alpha mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 140(7):2044–2055. doi:10.1053/j.gastro.2011.03.007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the European Commission (LSHM-CT-2006-037296: EUROIRON1).

Conflict of interest

P.M., N.P., G.O.L., S.V., R.J.S. and A.T.M. have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew T. McKie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masaratana, P., Patel, N., Latunde-Dada, G.O. et al. Regulation of iron metabolism in Hamp / mice in response to iron-deficient diet. Eur J Nutr 52, 135–143 (2013). https://doi.org/10.1007/s00394-011-0295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-011-0295-z

Keywords

Navigation