Skip to main content
Log in

Dietary naringenin increases hepatic peroxisome proliferators–activated receptor α protein expression and decreases plasma triglyceride and adiposity in rats

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Naringenin, a flavonoid present in grapefruit, has recently been shown to exert hypolipidemic and hypocholesterolemic effects, which has a particular importance for protecting against chronic diseases. However, the lipid-lowering potential of naringenin at the concentrations in the dietary range and its underlying mechanisms have yet to be fully elucidated.

Aim

The aim of the present study was (1) to investigate the effects of dietary naringenin on plasma and hepatic triglyceride and cholesterol levels and on adipose deposition in rat and (2) to determine the contribution of hepatic peroxisome proliferators–activated receptor α (PPARα) expression to fatty acid oxidation.

Methods

Male Long-Evans hooded rats were fed a diet supplemented with naringenin (0.003, 0.006, and 0.012%) for 6 weeks. We analyzed plasma and hepatic lipid contents and determined the protein expression of PPARα, carnitine-palmitoyl transferase 1L (CPT-1), and uncoupling protein 2 (UCP2), all of which are critical genes for fatty acid oxidation.

Results

Naringenin supplementation caused a significant reduction in the amount of total triglyceride and cholesterol in plasma and liver. In addition, naringenin supplementation lowered adiposity and triglyceride contents in parametrial adipose tissue. Naringenin-fed animals showed a significant increase in PPARα protein expression in the liver. Furthermore, expression of CPT-1 and UCP2, both of which are known to be regulated by PPARα, was markedly enhanced by naringenin treatment.

Conclusions

Our results indicate that the activation of PPARα transcription factor and upregulation of its fatty acid oxidation target genes by dietary naringenin may contribute to the hypolipidemic and anti-adiposity effects in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Joshipura KJ, Ascherio A, Manson JE et al (1999) Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA 282:1233–1239

    Article  CAS  Google Scholar 

  2. Gorinstein S, Caspi A, Libman I et al (2006) Red grapefruit positively influences serum triglyceride level in patients suffering from coronary atherosclerosis: studies in vitro and in humans. J Agric Food Chem 54:1887–1892

    Article  CAS  Google Scholar 

  3. Kurowska EM, Spence JD, Jordan J et al (2000) HDL-cholesterol-raising effect of orange juice in subjects with hypercholesterolemia. Am J Clin Nutr 72:1095–1100

    CAS  Google Scholar 

  4. Erlund I (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res 24:851–874

    Article  CAS  Google Scholar 

  5. Bok SH, Shin YW, Bae KH et al (2000) Effects of naringin and lovastatin on plasma and hepatic lipids in high-fat and high-cholesterol fed rats. Nutr Res 20:1007–1015

    Article  CAS  Google Scholar 

  6. Choi MS, Do KM, Park YS et al (2001) Effect of naringin supplementation on cholesterol metabolism and antioxidant status in rats fed high cholesterol with different levels of vitamin E. Ann Nutr Metab 45:193–201

    Article  CAS  Google Scholar 

  7. Lee SH, Park YB, Bae KH et al (1999) Cholesterol-Lowering Activity of Naringenin via Inhibition of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase and Acyl Coenzyme A: Cholesterol Acyltransferase in Rats. Ann Nutr Metab 43:173–180

    Article  CAS  Google Scholar 

  8. Santos KFR, Oliveira TT, Nagem TJ et al (1999) Hypolipidaemic effects of naringenin, rutin, nicotinic acid and their associations. Pharmacol Res 40:493–496

    Article  CAS  Google Scholar 

  9. Lee CH, Jeong TS, Choi YK et al (2001) Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem Bioph Res Co 284:681–688

    Article  CAS  Google Scholar 

  10. Huong DTT, Takahashi Y, Ide T (2006) Activity and mRNA levels of enzymes involved in hepatic fatty acid oxidation in mice fed citrus flavonoids. Nutrition 22:546–552

    Article  CAS  Google Scholar 

  11. Borradaile NM, de Dreu LE, Barrett PH, Behrsin CD, Huff MW (2003) Hepatocyte ApoB-containing lipoprotein secretion is decreased by the grapefruit flavonoid, naringenin, via inhibition of MTP-mediated microsomal triglyceride accumulation. Biochemistry 42:1283–1291

    Article  CAS  Google Scholar 

  12. Borradaile NM, de Dreu LE, Huff MW (2003) Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation. Diabetes 52:2554–2561

    Article  CAS  Google Scholar 

  13. Wilcox LJ, Borradaile NM, de Dreu LE, Huff MW (2001) Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP. J Lipid Res 42:725–734

    CAS  Google Scholar 

  14. Allister EM, Borradaile NM, Edwards JY, Huff MW (2005) Inhibition of microsomal triglyceride transfer protein expression and apolipoprotein B100 secretion by the citrus flavonoid naringenin and by insulin involves activation of the mitogen-activated protein kinase pathway in hepatocytes. Diabetes 54:1676–1683

    Article  CAS  Google Scholar 

  15. Kumpulainen J, Lehtonen M, Mattila P (1999) Trolox equivalent antioxidant capacity of average flavonoids intake in Finland. In: Kumpulainen JT, Salonen JT (ed) Natural antioxidants and anticarcinogens in nutrition, health and disease, Cambridge, pp 141–150

  16. Vasilopoulou E, Georga K, Joergensen MB, Naska A, Trichopoulou A (2005) The antioxidant properties of greek foods and the flavonoid content of the mediterranean menu. Curr Med Chem 5:33–45

    CAS  Google Scholar 

  17. Foxworthy PS, Eacho PI (1991) Effect of the peroxisome proliferator LY171883 on triglyceride accumulation in rats fed a fat-free diet. Biochem Pharmacol 42:1487–1491

    Article  CAS  Google Scholar 

  18. Staels B, Dallongeville J, Auwerx J, Schoonjans K et al (1998) Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98:2088–2093

    CAS  Google Scholar 

  19. Lee HJ, Choi SS, Park MK, An YJ et al (2002) Fenofibrate lowers abdominal and skeletal adiposity and improves insulin sensitivity in OLETF rats. Biochem Bioph Res Co 296:293–299

    Article  CAS  Google Scholar 

  20. Kim S, Shin HJ, Kim SY, Kim JH et al (2004) Genistein enhances expression of genes involved in fatty acid catabolism through activation of PPARα. Mol Cell Endocrinol 220:51–58

    Article  CAS  Google Scholar 

  21. Murase T, Nagasawa A, Suzuki J, Hase T, Tokimitsu I (2002) Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver. Int J Obes Relat Metab Disord 26:1459–1464

    Article  CAS  Google Scholar 

  22. Liu Li, Song S, Kun Z, Zhi-Qiang N et al (2008) Naringenin and hesperetin, two flavonoids derived from Citrus aurantium up-regulate transcription of adiponectin. Phytother Res 22:1400–1403

    Article  CAS  Google Scholar 

  23. Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475

    CAS  Google Scholar 

  24. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  25. Hsueh CT, Wu YC, Schwartz GK (2001) UCN-01 suppresses E2F–1 mediated by ubiquitin-proteasome-dependent degradation. Clin Cancer Res 7:669–674

    CAS  Google Scholar 

  26. Song J, Lu Y, Pang S, Chiu R (2004) An internal control for immunoblot analysis using the blotted membrane. Anal Biochem 331:201–203

    CAS  Google Scholar 

  27. Brady PS, Marine KA, Brady LJ, Ramsay RR (1989) Co-ordinate induction of hepatic mitochondrial and peroxisomal carnitine acyltransferase synthesis by diet and drugs. Biochem J 260:93–100

    CAS  Google Scholar 

  28. Kelly LJ, Vicario PP, Thompson GM, Candelore MR et al (1998) Peroxisome proliferator-activated receptors γ and α mediate in vivo regulation of uncoupling protein (UCP-1, UCP-2, UCP-3) gene expression. Endocrinology 139:4920–4927

    Article  CAS  Google Scholar 

  29. Mascaro C, Acosta E, Ortiz JA, Marrero PF et al (1998) Control of human muscle-type carnitine palmitoyltransferase I gene transcription by peroxisome proliferator-activated receptor. J Biol Chem 273:8560–8563

    Article  CAS  Google Scholar 

  30. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H et al (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568

    CAS  Google Scholar 

  31. Wilcox LJ, Borradaile NM, Huff MW (1999) Antiatherogenic properties of naringenin, a citrus flavonoid. Cardiovasc Drug Rev 17:160–178

    Article  CAS  Google Scholar 

  32. Wood N (2004) Hepatolipidemic effects of naringenin in high cornstarch-versus high coconut oil-fed rats. J Med Food 7:315–319

    CAS  Google Scholar 

  33. Kim S, Kim H, Lee M, Jeon S et al (2006) Naringin time-dependently lowers hepatic cholesterol biosynthesis and plasma cholesterol in rats fed high-fat and high-cholesterol diet. J Med Food 9:582–586

    Article  CAS  Google Scholar 

  34. Lee MK, Moon SS, Lee SE et al (2003) Naringenin 7-O-cetyl ether as inhibitor of HMG-CoA reductase and modulator of plasma and hepatic lipids in high cholesterol-fed rats. Bioorgan Med Chem 11:393–398

    Article  CAS  Google Scholar 

  35. Mouly PP, Arzouyan CR, Gaydou EM, Estienne JM (1994) Differentiation of citrus juices by factorial discriminant analysis using liquid chromatography of flavanone glycosides. J Agr Food Chem 42:70–79

    Article  CAS  Google Scholar 

  36. Kasim SE, LeBoeuf RC, Khilnani S, Tallapaka L et al (1992) Mechanisms of triglyceride-lowering effect of an HMG-CoA reductase inhibitor in a hypertriglyceridemic animal model, the Zucker obese rat. J Lipid Res 33:1–7

    CAS  Google Scholar 

  37. Roglans N, Sanguino E, Peris C, Alegret M et al (2002) Atorvastatin treatment induced peroxisome proliferator-activated receptor α expression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats. J Pharmalcol Exp Ther 302:232–239

    Article  CAS  Google Scholar 

  38. Neve BP, Fruchart JC, Staels B (2000) Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. Biochem Pharmacol 60:1245–1250

    Article  CAS  Google Scholar 

  39. Chitturi S, Farrell GC (2001) Etiopathogenesis of Nonalcoholic Steatohepatitis. Semin Liver Dis 21:027–042

    Article  CAS  Google Scholar 

  40. Guerre-Millo M, Gervois P, Raspe E, Madsen L et al (2000) Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity. J Biol Chem 275:16638–16642

    Article  CAS  Google Scholar 

  41. Keller J, Collet P, Bianchi A, Huin C et al (2000) Implications of peroxisome proliferator-activated receptors (PPARs) in development cell life status and disease. Int J Dev Biol 44:429–442

    CAS  Google Scholar 

  42. Mulvihill EE, Allister EM, Sutherland BG, Telford DE et al (2009) Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes 58:2198–2210

    Article  CAS  Google Scholar 

  43. Kim S, Sohn I, Lee YS, Lee YS (2005) Hepatic gene expression profiles are altered by genistein supplementation in mice with diet-induced obesity. J Nutr 135:33–41

    CAS  Google Scholar 

  44. Naaz A, Yellayi S, Zakroczymski MA, Bunick D et al (2003) The soy isoflavone genistein decreases adipose deposition in mice. Endocrinology 144:3315–3320

    Article  CAS  Google Scholar 

  45. Kannappan S, Anuradha CV (2009) Naringenin enhances insulin-stimulated tyrosine phosphorylation and improves the cellular actions of insulin in a dietary model of metabolic syndrome. Eur J Nutr. doi: 10.1007/s00394-009-0054-6

  46. Kawada T, Takahashi N, Fushiki T (2001) Biochemical and physiological characteristics of fat cell. J Nutr Sci Vitaminol (Tokyo) 47:1–12

    CAS  Google Scholar 

  47. Morikawa K, Nonaka M, Mochizuki H, Handa K et al (2008) Naringenin and hesperetin induce growth arrest, apoptosis, and cytoplasmic fat deposit in human preadipocytes. J Agric Food Chem 56:11030–11037

    Article  CAS  Google Scholar 

  48. Okuno A, Tamemoto H, Tobe K, Ueki K et al (1998) Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 101:1354–1361

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was in part supported by Grants (S00000005000000) from the University of Massachusetts, Amherst.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Cheul Kim.

Additional information

Kae Won Cho and Yong Ook Kim have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, K.W., Kim, Y.O., Andrade, J.E. et al. Dietary naringenin increases hepatic peroxisome proliferators–activated receptor α protein expression and decreases plasma triglyceride and adiposity in rats. Eur J Nutr 50, 81–88 (2011). https://doi.org/10.1007/s00394-010-0117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-010-0117-8

Keywords

Navigation