, Volume 44, Issue 4, pp 231-241

Effects of dietary fat and oxidized cholesterol on gene expression in rat liver as assessed by cDNA expression array analysis

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

Background

Specific oxysterols acting as ligands for nuclear transcription factors were shown to affect expression of genes involved in lipid metabolism. However, the various biological effects of oxysterols such as cytotoxicity, atherogenicity or mutagenicity suggest that other genes may be also affected by oxysterols than lipid metabolism.

Aim of the study

The present study was conducted to investigate the effects of dietary oxidized cholesterol containing significant amounts of oxysterols and its interactions with different dietary fats on gene expression profiles as assessed by DNA array technology in rats.

Methods

54 male Sprague–Dawley rats were assigned to six groups and were fed six semisynthetic diets, which varied in the type of dietary fat (coconut oil vs. salmon oil) and dietary cholesterol (none cholesterol vs. 5 g unoxidized cholesterol/kg vs. 5 g oxidized cholesterol/kg).

Results

Changes in gene expression as observed in response to dietary oxidized cholesterol were strongly dependent on the type of fat. In the rats fed coconut oil, the expression of 7 genes (5 up– and 2 down–regulated) was altered by dietary oxidized cholesterol, while in the rats fed salmon oil, the expression of 50 genes (16 up– and 34 down–regulated) was altered. 29 genes (22 up- and 7 down–regulated) were identified as possible targets for an altered gene expression by dietary salmon oil as compared to dietary coconut oil.

Conclusion

The present study showed that dietary oxidized cholesterol transcriptionally affects many genes involved in xenobiotic metabolism and stress response—an effect that was amplified by the administration of fish oil as dietary fat.