Skip to main content

Advertisement

Log in

Characteristics of PR interval as predictor for atrial fibrillation: association with biomarkers and outcomes

  • Review
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

The PR interval may be considered as a simple and easily obtainable predictor for adverse events, including atrial fibrillation (AF), pacemaker implantation, and mortality. Interestingly, both high and low extremes of the PR duration are associated with AF risk. However, the results regarding PR prolongation as a risk factor for AF are inconsistent. Some studies have analyzed the impact of P duration (as a part of the PR interval) and demonstrated that the P-duration contributes to the length of PR interval and adverse outcomes. The PR prolongation could be considered as a marker for cardiovascular degenerative aging caused by myocardial fibrosis and vascular inflammation. Furthermore, due to PR prolongation chronically raised intra-atrial pressure and consequential neuro-hormonal activation predispose systemic vascular endothelial dysfunction and explain the associations with adverse vascular events. In this review, we discuss the association between biomarkers with PR interval in AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kirchhof P, Benussi S, Kotecha D, et al (2016) ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace 18(11):1609–1678

    Article  PubMed  Google Scholar 

  2. Iwasaki Y, Nishida K, Kato T, Nattel S (2011) Atrial fibrillation pathophysiology: implications for management. Circulation 124(20):2264–2274

    Article  CAS  PubMed  Google Scholar 

  3. Cheng S, Keyes MJ, Larson MG et al (2009) Long-term outcomes in individuals with prolonged PR interval or first-degree atrioventricular block. JAMA 301(24):2571–2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheng M, Lu X, Huang J, Zhang S, Gu D (2015) Electrocardiographic PR prolongation and atrial fibrillation risk: a meta-analysis of prospective cohort studies. J Cardiovasc Electrophysiol 26(1):36–41

    Article  PubMed  Google Scholar 

  5. Magnani JW, Wang N, Nelson KP et al (2013) Electrocardiographic PR interval and adverse outcomes in older adults: the health, aging, and body composition study. Circ Arrhythm Electrophysiol 6(1):84–90

    Article  PubMed  Google Scholar 

  6. Nielsen JB, Pietersen A, Graff C et al (2013) Risk of atrial fibrillation as a function of the electrocardiographic PR interval: results from the Copenhagen ECG Study. Heart Rhythm 10(9):1249–1256

    Article  PubMed  Google Scholar 

  7. Soliman EZ, Cammarata M, Li Y (2014) Explaining the inconsistent associations of PR interval with mortality: the role of P-duration contribution to the length of PR interval. Heart Rhythm 11(1):93–98

    Article  PubMed  Google Scholar 

  8. Kamel H, Bartz TM, Longstreth WT JR et al (2015) Association between left atrial abnormality on ECG and vascular brain injury on MRI in the cardiovascular health study. Stroke 46(3):711–716

    Article  PubMed  PubMed Central  Google Scholar 

  9. Smith JW, O’Neal WT, Shoemaker MB et al (2016) PR-Interval components and atrial fibrillation risk (from the Atherosclerosis Risk in Communities Study). Am J Cardiol

  10. Pfeufer A, van Noord C, Marciante KD et al (2010) Genome-wide association study of PR interval. Nat Genet 42(2):153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith JG, Lowe JK, Kovvali S et al (2009) Genome-wide association study of electrocardiographic conduction measures in an isolated founder population: Kosrae. Heart Rhythm 6(5):634–641

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ellinor PT, Low AF, Patton KK, Shea MA, Macrae CA (2005) Discordant atrial natriuretic peptide and brain natriuretic peptide levels in lone atrial fibrillation. J Am Coll Cardiol 45(1):82–86

    Article  CAS  PubMed  Google Scholar 

  13. Rienstra M, Yin X, Larson MG et al (2014) Relation between soluble ST2, growth differentiation factor-15, and high-sensitivity troponin I and incident atrial fibrillation. Am Heart J 167(1):109–115.e2

    Article  CAS  PubMed  Google Scholar 

  14. Schnabel RB, Larson MG, Yamamoto JF et al (2009) Relation of multiple inflammatory biomarkers to incident atrial fibrillation. Am J Cardiol 104(1):92–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sinner MF, Stepas KA, Moser CB et al (2014) B-type natriuretic peptide and C-reactive protein in the prediction of atrial fibrillation risk: the CHARGE-AF Consortium of community-based cohort studies. Europace 16(10):1426–1433

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chan Y, Yiu K, Lau K et al (2014) The CHADS2 and CHA2DS2-VASc scores predict adverse vascular function, ischemic stroke and cardiovascular death in high-risk patients without atrial fibrillation: role of incorporating PR prolongation. Atherosclerosis 237(2):504–513

    Article  CAS  PubMed  Google Scholar 

  17. Jong S de, van Veen, Toon AB, van Rijen, Harold VM, de Bakker, Jacques MT (2011) Fibrosis and cardiac arrhythmias. J Cardiovasc Pharmacol 57(6):630–638

    Article  PubMed  Google Scholar 

  18. Marrouche NF, Wilber D, Hindricks G et al (2014) Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA 311(5):498–506

    Article  CAS  PubMed  Google Scholar 

  19. Tiffany Win T, Ambale Venkatesh B, Volpe GJ et al (2015) Associations of electrocardiographic P-wave characteristics with left atrial function, and diffuse left ventricular fibrosis defined by cardiac magnetic resonance: the PRIMERI study. Heart Rhythm 12(1):155–162

    Article  PubMed  Google Scholar 

  20. Müller P, Ivanov V, Kara K, Klein-Wiele O, Forkmann M, Piorkowski C, Blockhaus C, Dimitroulis D, Afzal S, Shin DI, Kelm M, Makimoto H, Mügge A (2017) Total atrial conduction time to predict occult atrial fibrillation after cryptogenic stroke. Clin Res Cardiol 106(2):113–119

    Article  PubMed  Google Scholar 

  21. Schnabel RB, Larson MG, Yamamoto JF et al (2010) Relations of biomarkers of distinct pathophysiological pathways and atrial fibrillation incidence in the community. Circulation 121(2):200–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith JG, Newton-Cheh C, Almgren P et al (2010) Assessment of conventional cardiovascular risk factors and multiple biomarkers for the prediction of incident heart failure and atrial fibrillation. J Am Coll Cardiol 56(21):1712–1719

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vicente J, Johannesen L, Galeotti L, Strauss DG (2014) Mechanisms of sex and age differences in ventricular repolarization in humans. Am Heart J 168(5):749–756

    Article  PubMed  Google Scholar 

  24. Mason JW, Ramseth DJ, Chanter DO, Moon TE, Goodman DB, Mendzelevski B (2007) Electrocardiographic reference ranges derived from 79,743 ambulatory subjects. J Electrocardiol 40(3):228–234

    Article  PubMed  Google Scholar 

  25. Dhingra R, Ho Nam B, Benjamin EJ et al (2005) Cross-sectional relations of electrocardiographic QRS duration to left ventricular dimensions: the Framingham Heart Study. J Am Coll Cardiol 45(5):685–689

    Article  PubMed  Google Scholar 

  26. Yang P, Clancy CE (2012) In silico prediction of sex-based differences in human susceptibility to cardiac ventricular tachyarrhythmias. Front Physiol 3:360

    PubMed  PubMed Central  Google Scholar 

  27. Lown B, Ganong WF, Levine SA (1952) The syndrome of short P–R interval, normal QRS complex and paroxysmal rapid heart action. Circulation 5(5):693–706

    Article  CAS  PubMed  Google Scholar 

  28. Kolek MJ, Parvez B, Muhammad R et al (2014) A common variant on chromosome 4q25 is associated with prolonged PR interval in subjects with and without atrial fibrillation. Am J Cardiol 113(2):309–313

    Article  CAS  PubMed  Google Scholar 

  29. Gudbjartsson DF, Arnar DO, Helgadottir A et al (2007) Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 448(7151):353–357

    Article  CAS  PubMed  Google Scholar 

  30. Chinchilla A, Daimi H, Lozano-Velasco E et al (2011) PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. Circ Cardiovasc Genet 4(3):269–279

    Article  CAS  PubMed  Google Scholar 

  31. Darbar D, Kannankeril PJ, Donahue BS et al (2008) Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. Circulation 117(15):1927–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sigurdsson MI, Muehlschlegel JD, Fox AA et al (2015) Genetic variants associated with atrial fibrillation and PR interval following cardiac surgery. J Cardiothorac Vasc Anesth 29(3):605–610

    Article  CAS  PubMed  Google Scholar 

  33. Kornej J, Reinhardt C, Kosiuk J et al (2012) Response of high-sensitive C-reactive protein to catheter ablation of atrial fibrillation and its relation with rhythm outcome. PLoS One 7(8):e44165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kornej J, Schmidl J, Ueberham L et al (2015) Galectin-3 in patients with atrial fibrillation undergoing radiofrequency catheter ablation. PLoS One 10(4):e0123574

    Article  PubMed  PubMed Central  Google Scholar 

  35. Patton KK, Ellinor PT, Heckbert SR et al (2009) N-terminal pro-B-type natriuretic peptide is a major predictor of the development of atrial fibrillation: the cardiovascular health study. Circulation 120(18):1768–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chan Y, Siu C, Yiu K et al (2013) Prolongation of PR interval is associated with endothelial dysfunction and activation of vascular repair in high-risk cardiovascular patients. J Interv Card Electrophysiol 37(1):55–61

    Article  PubMed  Google Scholar 

  37. Friedman DJ, Wang N, Meigs JB et al (2014) Pericardial fat is associated with atrial conduction: the Framingham Heart Study. J Am Heart Assoc 3(2):e000477

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dinov B, Kosiuk J, Kircher S et al (2014) Impact of metabolic syndrome on left atrial electroanatomical remodeling and outcomes after radiofrequency ablation of nonvalvular atrial fibrillation. Circ Arrhythm Electrophysiol 7(3):483–489

    Article  CAS  PubMed  Google Scholar 

  39. Kwok CS, Rashid M, Beynon R et al (2016) Prolonged PR interval, first-degree heart block and adverse cardiovascular outcomes: a systematic review and meta-analysis. Heart 102(9):672–680

    Article  CAS  PubMed  Google Scholar 

  40. Aro AL, Anttonen O, Kerola T et al (2014) Prognostic significance of prolonged PR interval in the general population. Eur Heart J 35(2):123–129

    Article  PubMed  Google Scholar 

  41. Okutucu S, Aytemir K, Oto A (2016) P-wave dispersion: what we know till now? JRSM Cardiovasc Dis 5:2048004016639443

    PubMed  PubMed Central  Google Scholar 

  42. Perez MV, Dewey FE, Marcus R, Ashley EA, Al-Ahmad AA, Wang PJ, Froelicher VF (2009) Electrocardiographic predictors of atrial fibrillation. Am Heart J 158(4):622–628

    Article  PubMed  Google Scholar 

  43. Ari H, Ari S, Akkaya M, Aydin C, Emlek N, Sarigül OY, Çetinkaya S, Bozat T, Şentürk M, Karaağaç K, Melek M, Yilmaz M (2013) Predictive value of atrial electromechanical delay for atrial fibrillation recurrence. Cardiol J 20(6):639–647

    Article  PubMed  Google Scholar 

  44. Walters TE, Nisbet A, Morris GM, Tan G, Mearns M, Teo E, Lewis N, Ng A, Gould P, Lee G, Joseph S, Morton JB, Zentner D, Sanders P, Kistler PM, Kalman JM (2016) Progression of atrial remodeling in patients with high-burden atrial fibrillation: implications for early ablative intervention. Heart Rhythm 13(2):331–339

    Article  PubMed  Google Scholar 

  45. Chandy J, Nakai T, Lee RJ, Bellows WH, Dzankic S, Leung JM (2004) Increases in P-wave dispersion predict postoperative atrial fibrillation after coronary artery bypass graft surgery. Anesth Analg 98(2):303–310

    Article  PubMed  Google Scholar 

  46. Tuluce K, Ozerkan F, Yakar Tuluce S, Yavuzgil O, Gurgun C, Bilgin M, Kahya Eren N, Kocabas U, Nalbantgil S, Soydas Cinar C (2015) Relationships between P wave dispersion, atrial electromechanical delay, left atrial remodeling, and NT-proBNP levels, in patients with hypertrophic cardiomyopathy. Cardiol J 22(1):94–100

    Article  PubMed  Google Scholar 

  47. Zheng LH, Yao Y, Wu LM, Zhang KJ, Zhang S (2015) Relationships of high-sensitive C-reactive protein and P-wave dispersion in lone atrial fibrillation. Chin Med J (Engl) 128(11):1450–1454

    Article  Google Scholar 

  48. Hosseini SM, Jamshir M (2015) Valsalva Maneuver and strain-related ECG changes. Res Cardiovasc Med 4(4):e28136

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author contributions

Katja Schumacher: Data collection, Drafting. Nikolaos Dagres; Critical revision of article. Gerhard Hindricks; Critical revision of article. Daniela Husser: Critical revision of article. Andreas Bollmann: Critical revision of article. Jelena Kornej: Concept/design, Data collection, analysis and interpretation, Drafting, Critical revision and Approving of article. Dr Jelena Kornej is responsible for the overall content as a guarantor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Kornej.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schumacher, K., Dagres, N., Hindricks, G. et al. Characteristics of PR interval as predictor for atrial fibrillation: association with biomarkers and outcomes. Clin Res Cardiol 106, 767–775 (2017). https://doi.org/10.1007/s00392-017-1109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-017-1109-y

Keywords

Navigation