Skip to main content
Log in

Correlation between optical coherence tomography-derived intraluminal parameters and fractional flow reserve measurements in intermediate grade coronary lesions: a comparison between diabetic and non-diabetic patients

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Fractional flow reserve (FFR) measurements accurately assess functional relevance in intermediate grade coronary lesions. A significant relationship between hemodynamic stenosis severity and optical coherence tomography (OCT)-derived intraluminal dimensions has recently been demonstrated. However, morphologic thresholds to identify significant stenoses are variable and exploration of this correlation in patients with diabetes mellitus (DM) remains currently incomplete. This study aimed at comparing the diagnostic value of intraluminal parameters as determined by OCT to predict FFR ≤0.8 in lesions of patients with versus without DM.

Methods

In 100 patients (DM = 56, non-DM = 44) with 142 coronary de novo lesions (DM = 80, non-DM = 62) of intermediate grade as determined by quantitative coronary angiography, we performed OCT and FFR. Stenoses were defined functionally relevant if FFR was ≤0.8.

Results

FFR measurements in the overall study cohort, the DM and the non-DM group correlated significantly with minimal lumen area (MLA) [overall: r 2 = 0.339, DM: r 2 = 0.341, non-DM: r 2 = 0.355 (all p < 0.001)], percent area stenosis [overall: r 2 = 0.352, DM: r 2 = 0.376, non-DM: r 2 = 0.351 (all p < 0.001)] and minimal lumen diameter [overall: r 2 = 0.333, DM: r 2 = 0.277, non-DM: r 2 = 0.417 (all p < 0.001)] without differing statistically between diabetic and non-diabetic patients (p = ns).

Receiver operating characteristic analysis demonstrated that among OCT-derived parameters, MLA predicted FFR ≤0.8 with the best diagnostic efficiency and with similar cut-off values for all patients [area under the curve (AUC) = 0.836, 95 % confidence interval (CI) = 0.772–0.901, cut-off value = 1.64 mm2] as well as for diabetic (AUC = 0.840, 95 % CI = 0.754–0.927, cut-off value = 1.59 mm2) and non-diabetic subjects (AUC = 0.833, 95 % CI = 0.734–0.932, cut-off value = 1.64 mm2).

Conclusion

In both, diabetic and non-diabetic patients, FFR and OCT-derived intraluminal measurements are significantly correlated and OCT predicts hemodynamically relevant coronary stenosis with moderate diagnostic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tobis J, Azarbal B, Slavin L (2007) Assessment of intermediate severity coronary lesions in the catheterization laboratory. J Am Coll Cardiol 49(8):839–848

    Article  PubMed  Google Scholar 

  2. Akin I, Nienaber CA, Richardt G, Tolg R, Hochadel M, Schneider S, Senges J, Tebbe U, Zeymer U, Sabin G, Kuck KH, Bergmann MW (2014) Risk factors for clinical events at 1-year follow-up after drug-eluting stent implantation: results from the prospective multicenter German DES.DE registry. Clin Res Cardiol 103(5):363–372

    Article  CAS  PubMed  Google Scholar 

  3. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, Klauss V, Manoharan G, Engstrom T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224

    Article  CAS  PubMed  Google Scholar 

  4. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, Koolen JJ (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334(26):1703–1708

    Article  CAS  PubMed  Google Scholar 

  5. Sahinarslan A, Kocaman SA, Olgun H, Kunak T, Kiziltunc E, Ozdemir M, Timurkaynak T (2009) The reliability of fractional flow reserve measurement in patients with diabetes mellitus. Coron Artery Dis 20(5):317–321

    Article  PubMed  Google Scholar 

  6. Dominguez-Franco AJ, Jimenez-Navarro MF, Munoz-Garcia AJ, Alonso-Briales JH, Hernandez-Garcia JM, Galvan Ede T (2008) Long-term prognosis in diabetic patients in whom revascularization is deferred following fractional flow reserve assessment. Rev Esp Cardiol 61(4):352–359

    Article  PubMed  Google Scholar 

  7. Yanagisawa H, Chikamori T, Tanaka N, Usui Y, Takazawa K, Yamashina A (2004) Application of pressure-derived myocardial fractional flow reserve in assessing the functional severity of coronary artery stenosis in patients with diabetes mellitus. Circ J 68(11):993–998

    Article  PubMed  Google Scholar 

  8. Reith S, Battermann S, Hellmich M, Marx N, Burgmaier M (2014) Impact of type 2 diabetes mellitus and glucose control on fractional flow reserve measurements in intermediate grade coronary lesions. Clin Res Cardiol 103(3):191–201

    Article  CAS  PubMed  Google Scholar 

  9. Akin I, Bufe A, Schneider S, Reinecke H, Eckardt L, Richardt G, Burska D, Senges J, Kuck KH, Nienaber CA (2010) Clinical outcomes in diabetic and non-diabetic patients with drug-eluting stents: results from the first phase of the prospective multicenter German DES.DE registry. Clin Res Cardiol 99(6):393–400

    Article  CAS  PubMed  Google Scholar 

  10. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, Chowdhary S, Costa MA, de Silva R, Dijkstra J, Di Mario C, Dudek D, Falk E, Feldman MD, Fitzgerald P, Garcia-Garcia HM, Gonzalo N, Granada JF, Guagliumi G, Holm NR, Honda Y, Ikeno F, Kawasaki M, Kochman J, Koltowski L, Kubo T, Kume T, Kyono H, Lam CC, Lamouche G, Lee DP, Leon MB, Maehara A, Manfrini O, Mintz GS, Mizuno K, Morel MA, Nadkarni S, Okura H, Otake H, Pietrasik A, Prati F, Raber L, Radu MD, Rieber J, Riga M, Rollins A, Rosenberg M, Sirbu V, Serruys PW, Shimada K, Shinke T, Shite J, Siegel E, Sonoda S, Suter M, Takarada S, Tanaka A, Terashima M, Thim T, Uemura S, Ughi GJ, van Beusekom HM, van der Steen AF, van Es GA, van Soest G, Virmani R, Waxman S, Weissman NJ, Weisz G (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 59(12):1058–1072

    Article  PubMed  Google Scholar 

  11. Kang SJ, Ahn JM, Song H, Kim WJ, Lee JY, Park DW, Yun SC, Lee SW, Kim YH, Lee CW, Park SW, Park SJ (2012) Usefulness of minimal luminal coronary area determined by intravascular ultrasound to predict functional significance in stable and unstable angina pectoris. Am J Cardiol 109(7):947–953

    Article  PubMed  Google Scholar 

  12. Takagi A, Tsurumi Y, Ishii Y, Suzuki K, Kawana M, Kasanuki H (1999) Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation 100(3):250–255

    Article  CAS  PubMed  Google Scholar 

  13. Briguori C, Anzuini A, Airoldi F, Gimelli G, Nishida T, Adamian M, Corvaja N, Di Mario C, Colombo A (2001) Intravascular ultrasound criteria for the assessment of the functional significance of intermediate coronary artery stenoses and comparison with fractional flow reserve. Am J Cardiol 87(2):136–141

    Article  CAS  PubMed  Google Scholar 

  14. Ben-Dor I, Torguson R, Gaglia MA Jr, Gonzalez MA, Maluenda G, Bui AB, Xue Z, Satler LF, Suddath WO, Lindsay J, Pichard AD, Waksman R (2011) Correlation between fractional flow reserve and intravascular ultrasound lumen area in intermediate coronary artery stenosis. Eurointervention 7(2):225–233

    Article  PubMed  Google Scholar 

  15. Gonzalo N, Escaned J, Alfonso F, Nolte C, Rodriguez V, Jimenez-Quevedo P, Banuelos C, Fernandez-Ortiz A, Garcia E, Hernandez-Antolin R, Macaya C (2012) Morphometric assessment of coronary stenosis relevance with optical coherence tomography: a comparison with fractional flow reserve and intravascular ultrasound. J Am Coll Cardiol 59(12):1080–1089

    Article  PubMed  Google Scholar 

  16. Shiono Y, Kitabata H, Kubo T, Masuno T, Ohta S, Ozaki Y, Sougawa H, Orii M, Shimamura K, Ishibashi K, Komukai K, Yamano T, Tanimoto T, Ino Y, Yamaguchi T, Hirata K, Mizukoshi M, Imanishi T, Akasaka T (2012) Optical coherence tomography-derived anatomical criteria for functionally significant coronary stenosis assessed by fractional flow reserve. Circ J 76(9):2218–2225

    Article  PubMed  Google Scholar 

  17. Pawlowski T, Prati F, Kulawik T, Ficarra E, Bil J, Gil R (2013) Optical coherence tomography criteria for defining functional severity of intermediate lesions: a comparative study with FFR. Int J Cardiovasc Imaging 29(8):1685–1691

    Article  PubMed  Google Scholar 

  18. Zafar H, Ullah I, Dinneen K, Matiullah S, Hanley A, Leahy MJ, Sharif F (2014) Evaluation of hemodynamically severe coronary stenosis as determined by fractional flow reserve with frequency domain optical coherence tomography measured anatomical parameters. J Cardiol 64(1):19–24

    Article  PubMed  Google Scholar 

  19. Reith S, Battermann S, Jaskolka A, Lehmacher W, Hoffmann R, Marx N, Burgmaier M (2013) Relationship between optical coherence tomography derived intraluminal and intramural criteria and haemodynamic relevance as determined by fractional flow reserve in intermediate coronary stenoses of patients with type 2 diabetes. Heart 99(10):700–707

    Article  PubMed  Google Scholar 

  20. Reiber JH, Serruys PW, Kooijman CJ, Wijns W, Slager CJ, Gerbrands JJ, Schuurbiers JC, den Boer A, Hugenholtz PG (1985) Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation 71(2):280–288

    Article  CAS  PubMed  Google Scholar 

  21. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Aretz HT, Halpern EF, Bouma BE (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111(12):1551–1555

    Article  PubMed Central  PubMed  Google Scholar 

  22. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293

    Article  CAS  PubMed  Google Scholar 

  23. White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310(13):819–824

    Article  CAS  PubMed  Google Scholar 

  24. Nallamothu BK, Spertus JA, Lansky AJ, Cohen DJ, Jones PG, Kureshi F, Dehmer GJ, Drozda JP Jr, Walsh MN, Brush JE Jr, Koenig GC, Waites TF, Gantt DS, Kichura G, Chazal RA, O’Brien PK, Valentine CM, Rumsfeld JS, Reiber JH, Elmore JG, Krumholz RA, Weaver WD, Krumholz HM (2013) Comparison of clinical interpretation with visual assessment and quantitative coronary angiography in patients undergoing percutaneous coronary intervention in contemporary practice: the Assessing Angiography (A2) project. Circulation 127(17):1793–1800

    Article  PubMed Central  PubMed  Google Scholar 

  25. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, Jagic N, Mobius-Winkler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engstrom T, Oldroyd KG, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Juni P, Fearon WF (2012) Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367(11):991–1001

    Article  PubMed  Google Scholar 

  26. Nahser PJ Jr, Brown RE, Oskarsson H, Winniford MD, Rossen JD (1995) Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation 91(3):635–640

    Article  PubMed  Google Scholar 

  27. Di Carli MF, Janisse J, Grunberger G, Ager J (2003) Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol 41(8):1387–1393

    Article  PubMed  Google Scholar 

  28. Pilz G, Heer T, Graw M, Ali E, Klos M, Scheck R, Zeymer U, Hofling B (2011) Influence of small caliber coronary arteries on the diagnostic accuracy of adenosine stress cardiac magnetic resonance imaging. Clin Res Cardiol 100(3):201–208

    Article  PubMed Central  PubMed  Google Scholar 

  29. Murtagh B, Higano S, Lennon R, Mathew V, Holmes DR Jr, Lerman A (2003) Role of incremental doses of intracoronary adenosine for fractional flow reserve assessment. Am Heart J 146(1):99–105

    Article  CAS  PubMed  Google Scholar 

  30. De Bruyne B, Pijls NH, Barbato E, Bartunek J, Bech JW, Wijns W, Heyndrickx GR (2003) Intracoronary and intravenous adenosine 5′-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circulation 107(14):1877–1883

    Article  PubMed  Google Scholar 

  31. Leone AM, Porto I, De Caterina AR, Basile E, Aurelio A, Gardi A, Russo D, Laezza D, Niccoli G, Burzotta F, Trani C, Mazzari MA, Mongiardo R, Rebuzzi AG, Crea F (2012) Maximal hyperemia in the assessment of fractional flow reserve: intracoronary adenosine versus intracoronary sodium nitroprusside versus intravenous adenosine: the NASCI (Nitroprussiato versus Adenosina nelle Stenosi Coronariche Intermedie) study. JACC Cardiovasc Interv 5(4):402–408

    Article  PubMed  Google Scholar 

  32. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47(8 Suppl):C13–C18

    Article  CAS  PubMed  Google Scholar 

  33. Marso SP, House JA, Klauss V, Lerman A, Margolis P, Leon MB (2010) Diabetes mellitus is associated with plaque classified as thin cap fibroatheroma: an intravascular ultrasound study. Diab Vasc Dis Res 7(1):14–19

    Article  PubMed  Google Scholar 

  34. Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ, Farb A, Virmani R (2004) Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol 24(7):1266–1271

    Article  CAS  PubMed  Google Scholar 

  35. De Bruyne B, Pijls NH, Bartunek J, Kulecki K, Bech JW, De Winter H, Van Crombrugge P, Heyndrickx GR, Wijns W (2001) Fractional flow reserve in patients with prior myocardial infarction. Circulation 104(2):157–162

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Reith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reith, S., Battermann, S., Hellmich, M. et al. Correlation between optical coherence tomography-derived intraluminal parameters and fractional flow reserve measurements in intermediate grade coronary lesions: a comparison between diabetic and non-diabetic patients. Clin Res Cardiol 104, 59–70 (2015). https://doi.org/10.1007/s00392-014-0759-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-014-0759-2

Keywords

Navigation