Skip to main content
Log in

Ventricular pressure–volume loops obtained by 3D real-time echocardiography and mini pressure wire—a feasibility study

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Introduction

Pressure–volume relations (PVR) provide vital information regarding ventricular performance and cardiac pathophysiology. Acquiring PVR by conductance catheter technology is invasive and laborious, which explains why the assessment of PVR is not used in clinical practice. Real-time three-dimensional echocardiography (3DE) allows almost instantaneous capture of ventricular volume changes throughout the cardiac cycle. The aim of the study was to assess the feasibility of 3DE combined with pressure data to calculate PVR in children and adolescents.

Methods

In 31 patients with congenital heart disease (age 3 days–22.7 years, weight 2.75–80.0 kg), ventricular pressure was recorded by a mini pressure wire during routine catheterization. Simultaneously, 3D datasets of the left or right ventricle were acquired for calculation of volume. PVR were generated from contemporaneous 3D volume and pressure data. Systolic myocardial elastance, ventriculo-arterial coupling, diastolic relaxation constant Tau and end-diastolic PVR were determined using a single-beat approach.

Results

Computation of PVR using non-invasive 3D volume data and pressure curves obtained by mini pressure wire was easy, feasible and reproducible. On average, 6 [3–11] PVR, needing an additional examination time of 6.5 ± 3.5 min, were acquired. Both intra- and interobserver variability were good for all measured parameters (coefficient of variation <10%).

Conclusions

Calculation of PVR from 3DE volume curves and simultaneous pressure data obtained by a mini pressure wire is a feasible method to assess cardiac function. Due to the tiny size of the pressure wire used, PVR can be acquired even in small neonates with congenital heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Graham TP Jr (1991) Ventricular performance in congenital heart disease. Circulation 84:2259–2274

    Article  PubMed  Google Scholar 

  2. Kuehne T, Yilmaz S, Schulze-Neick I, Wellnhofer E, Ewert P, Nagel E, Lange P (2005) Magnetic resonance imaging guided catheterisation for assessment of pulmonary vascular resistance: in vivo validation and clinical application in patients with pulmonary hypertension. Heart 91:1064–1069

    Article  PubMed  CAS  Google Scholar 

  3. Apitz C, Latus H, Binder W, Uebing A, Seeger A, Bretschneider C, Sieverding L, Hofbeck M (2010) Impact of restrictive physiology on intrinsic diastolic right ventricular function and lusitropy in children and adolescents after repair of tetralogy of Fallot. Heart 96:1837–1841

    Article  PubMed  Google Scholar 

  4. Schmitt B, Steendijk P, Ovroutski S, Lunze K, Rahmanzadeh P, Maarouf N, Ewert P, Berger F, Kuehne T (2010) Pulmonary vascular resistance, collateral flow, and ventricular function in patients with a Fontan circulation at rest and during dobutamine stress/clinical perspective. Circ Cardiovasc Imaging 3:623–631

    Article  PubMed  Google Scholar 

  5. Yerebakan C, Klopsch C, Niefeldt S, Zeisig V, Vollmar B, Liebold A, Sandica E, Steinhoff G (2010) Acute and chronic response of the right ventricle to surgically induced pressure and volume overload—an analysis of pressure-volume relations. Interact Cardiovasc Thorac Surg 10:519–525

    Article  PubMed  Google Scholar 

  6. Daneshvar D, Wei J, Tolstrup K, Thomson LE, Shufelt C, Merz CN (2010) Diastolic dysfunction: improved understanding using emerging imaging techniques. Am Heart J 160:394–404

    Article  PubMed  Google Scholar 

  7. Herberg U, Brand M, Bernhardt C, Trier HG, Breuer J (2011) Variables influencing the accuracy of 2-dimensional and real-time 3-dimensional echocardiography for assessment of small volumes, areas, and distances: an in vitro study using static tissue-mimicking phantoms. J Ultrasound Med 30:899–908

    PubMed  Google Scholar 

  8. Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, Faletra FF, Franke A, Hung J, Pérez de Isla L, Kamp O, Kasprzak JD, Lancellotti P, Marwick TH, McCulloch ML, Monaghan MJ, Nihoyannopoulos P, Pandian NG, Pellikka PA, Pepi M, Roberson DA, Shernan SK, Shirali GS, Sugeng L, Ten Cate FJ, Vannan MA, Zamorano JL, Zoghbi WA (2012) EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiog 25:3–46

    Article  Google Scholar 

  9. Niemann PS, Pinho L, Balbach T, Galuschky C, Blankenhagen M, Silberbach M, Broberg C, Jerosch-Herold M, Sahn DJ (2007) Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging. J Am Coll Cardiol 50:1668–1676

    Article  PubMed  Google Scholar 

  10. Grison A, Maschietto N, Reffo E, Stellin G, Padalino M, Vida V, Milanesi O (2007) Three-dimensional echocardiographic evaluation of right ventricular volume and function in pediatric patients: validation of the technique. J Am Soc Echocardiog 20:921–929

    Article  Google Scholar 

  11. Johnson TR, Hoch M, Huber A, Römer U, Reiser MF, Schönberg SO, Netz H (2006) Quantification of right ventricular function in congenital heart disease: correlation of 3d echocardiography and mri as complementary methods. Rofo 178:1014–1021

    Article  PubMed  CAS  Google Scholar 

  12. Soriano BD, Hoch M, Ithuralde A, Geva T, Powell AJ, Kussman BD, Graham DA, Tworetzky W, Marx GR (2008) Matrix-array 3-dimensional echocardiographic assessment of volumes, mass, and ejection fraction in young pediatric patients with a functional single ventricle: a comparison study with cardiac magnetic resonance. Circulation 117:1842–1848

    Article  PubMed  Google Scholar 

  13. Leung KYE, Bosch JG (2010) Automated border detection in three-dimensional echocardiography: principles and promises European. J Echocardio 11:97–108

    Article  Google Scholar 

  14. Faller J, Klebach C, Breuer J, Herberg U (2011) How accurate is 3d-realtime-echocardiography (rt-3de) for recording the time flow of a cardiac cycle? A study using controller-operated pulsative phantoms. Ultrasound Med Biol 37:49

    Article  Google Scholar 

  15. Herberg U, Faller J, Klebach C, Breuer J (2012) Temporal and spatial accuracy of 3D real time echocardiography in the neonatal and pediatric setting–validation studies using small moving and pulsative phantoms. Cardiol Young 22:320

    Google Scholar 

  16. Laser KT, Bunge M, Hauffe P, Argueta JR, Kelter-Klopping A, Barth P, Sarikouch S, Burchert W, Kececioglu D, Korperich H (2010) Left ventricular volumetry in healthy children and adolescents: comparison of two different real-time three-dimensional matrix transducers with cardiovascular magnetic resonance. Eur J Echocardiogr 11:138–148

    Article  PubMed  Google Scholar 

  17. Herberg U, Krötz A, Breuer T, Schmitz C, Breuer J (2007) Assessment of left ventricular size and function using 3D-echo-generated volume-time-curves in small infants with severe left ventricular outflow tract obstruction. Cardiol Young 17:43

    Google Scholar 

  18. Brimioulle S, Wauthy P, Ewalenko P, Rondelet B, Vermeulen F, Kerbaul F, Naeije R (2003) Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am J Physiol Heart Circ Physiol 284:H1625–H1630

    PubMed  CAS  Google Scholar 

  19. ten Brinke EA, Klautz RJ, Verwey HF, Van Der Wall EE, Dion RA, Steendijk P (2010) Single-beat estimation of the left ventricular end-systolic pressure–volume relationship in patients with heart failure. Acta Physiol 198:37–46

    Article  Google Scholar 

  20. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol Heart Circ Physiol 245:H773–H780

    CAS  Google Scholar 

  21. Starling MR (1993) Left ventricular-arterial coupling relations in the normal human heart. Am Heart J 125:1659–1666

    Article  PubMed  CAS  Google Scholar 

  22. Kameyama T, Asanoi H, Ishizaka S, Yamanishi K, Fujita M, Sasayama S (1992) Energy conversion efficiency in human left ventricle. Circulation 85:988–996

    Article  PubMed  CAS  Google Scholar 

  23. Klotz S, Hay I, Dickstein ML, Yi G-H, Wang J, Maurer MS, Kass DA, Burkhoff D (2006) Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application. Am J Physiol Heart Circ Physiol 291:H403–H412

    Article  PubMed  CAS  Google Scholar 

  24. ten Brinke EA, Burkhoff D, Klautz RJ, Tschöpe C, Schalij MJ, Bax JJ, van der Wall EE, Dion RA, Steendijk P (2010) Single-beat estimation of the left ventricular end-diastolic pressure–volume relationship in patients with heart failure. Heart 96:213–219

    Article  PubMed  Google Scholar 

  25. Matsubara H, Takaki M, Yasuhara S, Araki J, Suga H (1995) Logistic Time Constant of Isovolumic Relaxation Pressure Time Curve in the Canine Left Ventricle : better Alternative to Exponential Time Constant. Circulation 92:2318–2326

    Article  PubMed  CAS  Google Scholar 

  26. Senzaki H, Kass DA (2010) Analysis of isovolumic relaxation in failing hearts by monoexponential time constants overestimates lusitropic change and load dependence: mechanisms and advantages of alternative logistic fit. Circ Heart Fail 3:268–276

    Article  PubMed  Google Scholar 

  27. Bland JM, Altman DG (2003) Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol 22:85–93

    Article  PubMed  CAS  Google Scholar 

  28. Tanoue Y, Kado H, Shiokawa Y, Fusazaki N, Ishikawa S (2004) Midterm ventricular performance after Norwood procedure with right ventricular-pulmonary artery conduit. Ann Thorac Surg 78:1965–1971

    Article  PubMed  Google Scholar 

  29. Tanoue Y, Sese A, Imoto Y, Joh K (2003) Ventricular mechanics in the bidirectional glenn procedure and total cavopulmonary connection. Ann Thorac Surg 76:562–566

    Article  PubMed  Google Scholar 

  30. Tanoue Y, Sese A, Ueno Y, Joh K, Hijii T (2001) Bidirectional Glenn procedure improves the mechanical efficiency of a total cavopulmonary connection in high-risk fontan candidates. Circulation 103:2176–2180

    Article  PubMed  CAS  Google Scholar 

  31. Alsoufi B, Karamlou T, McCrindle BW, Caldarone CA (2007) Management options in neonates and infants with critical left ventricular outflow tract obstruction. Eur J Cardiothorac Surg 31:1013–1021

    Article  PubMed  Google Scholar 

  32. Colan SD, McElhinney DB, Crawford EC, Keane JF, Lock JE (2006) Validation and re-evaluation of a discriminant model predicting anatomic suitability for biventricular repair in neonates with aortic stenosis. J Am Coll Cardiol 47:1858–1865

    Article  PubMed  Google Scholar 

  33. Hickey EJ, Caldarone CA, Blackstone EH, Lofland GK, Yeh T Jr, Pizarro C, Tchervenkov CI, Pigula F, Overman DM, Jacobs ML, McCrindle BW (2007) Critical left ventricular outflow tract obstruction: the disproportionate impact of biventricular repair in borderline cases. J Thorac Cardiovasc Surg 134(1429–1437):e1427

    Google Scholar 

  34. Uebing A, Fischer G, Schlangen J, Apitz C, Steendijk P, Kramer HH (2011) Can we use the end systolic volume index to monitor intrinsic right ventricular function after repair of tetralogy of Fallot? Int J Cardiol 147:52–57

    Article  PubMed  Google Scholar 

  35. Senzaki H, Iwamoto Y, Ishido H, Masutani S, Taketazu M, Kobayashi T, Katogi T, Kyo S (2008) Ventricular–vascular stiffening in patients with repaired coarctation of aorta. Circulation 118:S191–S198

    Article  PubMed  Google Scholar 

  36. Gewillig M (2005) Ventricular dysfunction of the functionally univentricular heart: management and outcomes. Cardiol Young 15:31–34

    Article  PubMed  Google Scholar 

  37. Chen C-H, Fetics B, Nevo E, Rochitte CE, Chiou K-R, Ding P-A, Kawaguchi M, Kass DA (2001) Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 38:2028–2034

    Article  PubMed  CAS  Google Scholar 

  38. Gayat E, Mor-Avi V, Weinert L, Yodwut C, Lang RM (2011) Noninvasive quantification of left ventricular elastance and ventricular-arterial coupling using three-dimensional echocardiography and arterial tonometry. Am J Physiol Heart Circ Physiol 301:H1916–H1923

    Article  PubMed  CAS  Google Scholar 

  39. Soliman OII, Kirschbaum SW, van Dalen BM, van der Zwaan HB, Delavary BM, Vletter WB, van Geuns R-JM, Ten Cate FJ, Geleijnse ML (2008) Accuracy and reproducibility of quantitation of left ventricular function by real-time three-dimensional echocardiography versus cardiac magnetic resonance. Am J Cardiol 102:778–783

    Article  PubMed  Google Scholar 

  40. Corsi C, Lang RM, Veronesi F, Weinert L, Caiani EG, MacEneaney P, Lamberti C, Mor-Avi V (2005) Volumetric quantification of global and regional left ventricular function from real-time three-dimensional echocardiographic images. Circulation 112:1161–1170

    Article  PubMed  Google Scholar 

  41. Friedberg MK, Su X, Tworetzky W, Soriano BD, Powell AJ, Marx GR (2010) Validation of 3D echocardiographic assessment of left ventricular volumes, mass, and ejection fraction in neonates and infants with congenital heart disease. Circ Cardiovasc Imaging 3:735–742

    Article  PubMed  Google Scholar 

  42. Jenkins C, Bricknell K, Chan J, Hanekom L, Marwick TH (2007) Comparison of two- and three-dimensional echocardiography with sequential magnetic resonance imaging for evaluating left ventricular volume and ejection fraction over time in patients with healed myocardial infarction. Am J Cardiol 99:300–306

    Article  PubMed  Google Scholar 

  43. Riehle TJ, Mahle WT, Parks WJ, Sallee D 3rd, Fyfe DA (2008) Real-time three-dimensional echocardiographic acquisition and quantification of left ventricular indices in children and young adults with congenital heart disease: comparison with magnetic resonance imaging. J Am Soc Echocardiog 21:78–83

    Article  Google Scholar 

  44. Lu X, Xie M, Tomberlin D, Klas B, Nadvoretskiy V, Ayres N, Towbin J, Ge S (2008) How accurately, reproducibly, and efficiently can we measure left ventricular indices using M-mode, 2-dimensional, and 3-dimensional echocardiography in children? Am Heart J 155:946–953

    Article  PubMed  Google Scholar 

  45. Lu X, Nadvoretskiy V, Bu L, Stolpen A, Ayres N, Pignatelli RH, Kovalchin JP, Grenier M, Klas B, Ge S (2008) Accuracy and reproducibility of real-time three-dimensional echocardiography for assessment of right ventricular volumes and ejection fraction in children. J Am Soc Echocardiog 21:84–89

    Article  Google Scholar 

  46. Schlangen J, Fischer G, Steendijk P, Petko C, Scheewe J, Hart C, Hansen JH, Ahrend F, Rickers C, Kramer H–H, Uebing A (2012) Does left ventricular size impact on intrinsic right ventricular function in hypoplastic left heart syndrome? Int J Cardiol [Epub ahead of print]

  47. Chaturvedi RR, Lincoln C, Gothard JWW, Scallan MH, White PA, Redington AN, Shore DF (1998) Left ventricular dysfunction after open repair of simple congenital heart defects in infants and children: quantitation with the use of a conductance catheter immediately after bypass. J Thorac Cardiovasc Surg 115:77–83

    Article  PubMed  CAS  Google Scholar 

  48. Witsenburg M, Van der Velde ET, Klautz RJM, Hess J (1994) Acute effects of balloon valvuloplasty and pacing on left ventricular performance in children with moderate pulmonary valve stenosis, analysed by systolic and diastolic pressure—volume relationships. Eur Heart J 15:83–88

    PubMed  CAS  Google Scholar 

  49. Schmitt B, Steendijk P, Lunze K, Ovroutski S, Falkenberg J, Rahmanzadeh P, Maarouf N, Ewert P, Berger F, Kuehne T (2009) Integrated assessment of diastolic and systolic ventricular function using diagnostic cardiac magnetic resonance catheterization: validation in pigs and application in a clinical pilot study. JACC Cardiovasc Imaging 2:1271–1281

    Article  PubMed  Google Scholar 

  50. Göhl K, Perl S, Wortmann A, Bachmann K (1992) Ventricular performance in relation to heart rate and AV delay at rest. Eur Heart J 13:91–98

    Article  PubMed  Google Scholar 

  51. Freeman GL, Little WC, O’Rourke RA (1987) Influence of heart rate on left ventricular performance in conscious dogs. Circ Res 61:455–464

    Article  PubMed  CAS  Google Scholar 

  52. Maughan WL, Sunagawa K, Burkhoff D, Graves WL, Hunter WC, Sagawa K (1985) Effect of heart rate on the canine end-systolic pressure-volume relationship. Circulation 72:654–659

    Article  PubMed  CAS  Google Scholar 

  53. Faber MJ, Dalinghaus M, Lankhuizen IM, Steendijk P, Hop WC, Schoemaker RG, Duncker DJ, Lamers JMJ, Helbing WA (2006) Right and left ventricular function after chronic pulmonary artery banding in rats assessed with biventricular pressure-volume loops. Am J Physiol Heart Circ Physiol 291:H1580–H1586

    Article  PubMed  CAS  Google Scholar 

  54. ten Brinke EA, Klautz RJ, Tulner SA, Verwey HF, Bax JJ, Delgado V, Holman ER, Schalij MJ, van der Wall EE, Braun J, Versteegh MI, Dion RA, Steendijk P (2010) Clinical and functional effects of restrictive mitral annuloplasty at midterm follow-up in heart failure patients. Ann Thorac Surg 90:1913–1920

    Article  PubMed  Google Scholar 

  55. Chang S-A, Lee S-C, Kim E-Y, Hahm S-H, Jang SY, Park S-J, Choi J-O, Park SW, Choe YH, Oh JK (2011) Feasibility of single-beat full-volume capture real-time three-dimensional echocardiography and auto-contouring algorithm for quantification of left ventricular volume: validation with cardiac magnetic resonance imaging. J Am Soc Echocardiogr 24:853–859

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the funding by the Deutsche Stiftung für Herzforschung, Germany, Fördergemeinschaft Deutsche Kinderherzzentren e.V., Bonn, Germany, and Else-Kröner-Fresenius-Stiftung, Bad Homburg, Germany.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Herberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herberg, U., Gatzweiler, E., Breuer, T. et al. Ventricular pressure–volume loops obtained by 3D real-time echocardiography and mini pressure wire—a feasibility study. Clin Res Cardiol 102, 427–438 (2013). https://doi.org/10.1007/s00392-013-0548-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-013-0548-3

Keywords

Navigation