Skip to main content
Log in

Assessment of serum cotinine in patients with chronic heart failure: self-reported versus objective smoking behaviour

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Smoking is a major risk factor in the development of coronary artery disease and thus chronic heart failure (HF). The value of self-reported smoking behaviour has not been validated in patients with HF. We sought to assess serum cotinine levels, a marker of recent tobacco exposure, in a cohort of clinically stable patients with chronic HF.

Methods and results

We analysed serum cotinine values in 75 patients with chronic HF [mean age ± SD 64 ± 16 years, 85 % male, left ventricular ejection fraction 30 ± 1 %, New York Heart Association class (I/II vs. III/IV) 73 %/27 %, haemoglobin (Hb) 13.4 ± 1.5 g/dL, serum creatinine 1.21 ± 0.51 mg/dL] and 30 control subjects of similar age (63 ± 11 years, 43 % male, Hb 14.1 ± 1.5 g/dL, creatinine 1.12 ± 0.92 mg/dL) using a chemiluminescence immunoassay. Patients were interviewed about their smoking habits, and routine laboratory parameters were analysed. In patients with HF, cotinine values ranged from undetectable to 829 μg/L (mean 110 ± 208 μg/L). Similar findings were evident in healthy subjects with cotinine ranging from undetectable to 860 μg/L (mean 105 ± 208 μg/L). Serum cotinine levels correlated with leukocyte count and haemoglobin concentration (both p < 0.05). Self-reported smoking behaviour did not correspond to serum cotinine level in serum in 16.9 % of the patients with chronic HF. No such finding was evident in control subjects.

Conclusions

Serum cotinine measurement provides an easily applicable means to analyse smoking behaviour in patients with chronic HF. Its assessment may permit analysis of smoking deception in daily clinical routine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Neal L, Benowitz MD (2010) Nicotine addiction. New Engl J Med 362:2295–2303

    Article  Google Scholar 

  2. von Haehling S, Schefold JC, Hodoscek LM, Doehner W, Mannaa M, Anker SD, Lainscak M (2010) Anaemia is an independent predictor of death in patients hospitalized for acute heart failure. Clin Res Cardiol 99(2):107–113

    Article  Google Scholar 

  3. Zittermann A, Jungvogel A, Prokop S, Kuhn J, Dreier J, Fuchs U, Schulz U, Gummert JF, Börgermann J (2011) Vitamin D deficiency is an independent predictor of anemia in end-stage heart failure. Clin Res Cardiol 100(9):781–788

    Article  PubMed  CAS  Google Scholar 

  4. Wong LS, van der Harst P, de Boer RA, Codd V, Huzen J, Samani NJ, Hillege HL, Voors AA, van Gilst WH, Jaarsma T, van Veldhuisen DJ (2009) Renal dysfunction is associated with shorter telomere length in heart failure. Clin Res Cardiol 98(10):629–634

    Article  PubMed  Google Scholar 

  5. Gitt AK, Jünger C, Smolka W, Bestehorn K (2010) Prevalence and overlap of different lipid abnormalities in statin-treated patients at high cardiovascular risk in clinical practice in Germany. Clin Res Cardiol 99(11):723–733

    Article  PubMed  Google Scholar 

  6. Thoenes M, Tebbe U, Rosin L, Paar WD, Bramlage P, Kirch W, Böhm M (2011) Blood pressure management in a cohort of hypertensive patients in Germany treated by cardiologists. Clin Res Cardiol 100(6):483–491

    Article  PubMed  Google Scholar 

  7. von Haehling S, Anker SD (2010) Cachexia as a major underestimated and unmet medical need: facts and numbers. J Cachexia Sarcopenia Muscle 1(1):1–5

    Article  Google Scholar 

  8. Shah AM, Pfeffer MA, Hartley LH, Moyé LA, Gersh BJ, Rutherford JD et al (2010) Risk of all-cause mortality, recurrent myocardial infarction, and heart failure hospitalization associated with smoking status following myocardial infarction with left ventricular dysfunction. Am J Cardiol 106:911–916

    Article  PubMed  Google Scholar 

  9. Conard MW, Haddock CK, Carlos Poston WS, Spertus JA (2009) The impact of smoking status on the health status of heart failure patients. Congest Heart Fail 15(2):82–86

    Article  PubMed  Google Scholar 

  10. From Attebring M, Herlitz J, Berndt AK, Karlsson T, Hjalmarson A (2001) Are patients truthful about their smoking habits? A validation of self-report about smoking cessation with biochemical markers of smoking activity amongst patients with ischaemic heart disease. JIM 249:145–151

    Google Scholar 

  11. Benowitz NL, Jacob PIII (1994) Metabolism of nicotine to cotinine studied by a dual stable isotope method. Clin Pharmacol Ther 56:483–493

    Article  PubMed  CAS  Google Scholar 

  12. U.S. Environmental Protection agency (1992) Respiratory health effects of passive smoking (also known as exposure to secondhand smoke or environmental tobacco smoke ETS). U.S. Environmental Protection Agency, Office of Research and Development, Office of Health and Environmental Assessment, Washington, DC, EPA/600/6-90/006F. http://cfpub2.epa.gov/ncea/cfm/recordisplay.cfm?deid=2835

  13. Milman N, Pedersen AN (2009) Blood haemoglobin concentrations are higher in smokers and heavy alcohol consumers than in non-smokers and abstainers: should we adjust the reference range? Ann Hematol 88(7):687–694

    Article  PubMed  CAS  Google Scholar 

  14. Whincup PH, Gilg JA, Emberson JR (2004) Passive smoking and risk of coronary heart disease and stroke: prospective study with cotinine measurement. BMJ 329:200–205

    Article  PubMed  CAS  Google Scholar 

  15. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K et al. (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33(14):1787–1847

    Google Scholar 

  16. Eskenazi B, Prehn AW, Christianson RE (1995) Passive and active maternal smoking as measured by serum cotinine: the effect on birth weight. Am J Public Health 85(3):395–398

    Article  PubMed  CAS  Google Scholar 

  17. Breitling LP, Rothenbacher D, Vossen CY, Hahmann H, Wüsten B, Brenner H (2011) Validated smoking cessation and prognosis in patients with stable coronary heart disease. J Am Coll Cardiol 58:196–197

    Article  PubMed  Google Scholar 

  18. Twardella D, Rothenbacher D, Hahmann H, Wusten B, Brenner H (2006) The underestimated impact of smoking and smoking cessation on the risk of secondary cardiovascular disease events in patients with stable coronary heart disease: prospective cohort study. J Am Coll Cardiol 47:887–889

    Article  PubMed  Google Scholar 

  19. Batra A (2011) Treatment of tobacco dependence. Dtsch Arztebl Int 108(33):555–564

    PubMed  Google Scholar 

  20. Black JH 3rd (2010) Evidence base and strategies for successful smoking cessation. J Vasc Surg 51(6):1529–1537

    Article  PubMed  Google Scholar 

  21. Benowitz NL (1996) Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiol Rev 18:188–204

    Article  PubMed  CAS  Google Scholar 

  22. Hukkanen J, Jacob P III, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57(1):79–115

    Article  PubMed  CAS  Google Scholar 

  23. Crooks PA, Dwoskin LP (1997) Contribution of CNS nicotine metabolites to the neuropharmacological effects of nicotine and tobacco smoking. Biochem Pharmacol 54(7):743–753

    Article  PubMed  CAS  Google Scholar 

  24. Gilbert DD (1993) Chemical analyses as validators in smoking cessation programs. J Behav Med 16(3):295–308

    Article  PubMed  CAS  Google Scholar 

  25. Stuber J, Galea S (2009) Who conceals their smoking status from their health care provider? Nicotine Tob Res 11(3):303–307

    Article  PubMed  Google Scholar 

  26. Iribarren C, Darbinian J, Klatsky AL, Friedman GD (2004) Cohort study of exposure to environmental tobacco smoke and risk of first ischemic stroke and transient ischemic attack. Neuroepidemiology 23:38–44

    Article  PubMed  Google Scholar 

  27. Parry H, Cohen S, Schlarb JE, Tyrrell DA, Fisher A, Russell MA et al (1997) Smoking, alcohol consumption, and leukocyte counts. Am J Clin Pathol 107(1):64–67

    PubMed  CAS  Google Scholar 

  28. Venn A, Britton J (2007) Exposure to secondhand smoke and biomarkers of cardiovascular disease risk in never-smoking adults. Circulation 115(8):990–995

    Article  PubMed  CAS  Google Scholar 

  29. Eisen ME, Hammond EC (1956) The effect of smoking on packed cell volume, red blood cell counts, haemoglobin and platelet count. Can Med Assoc J 75(6):520–523

    PubMed  CAS  Google Scholar 

  30. Zwadski M, Gac P, Poreba R, Murawska-Cialowicz E, Wielkoszynski T, Januszewska L et al (2008) Levels of hemoglobin and lipid peroxidation metabolites in blood, catalase activity in erythrocytes and peak expiratory flow rate in subjects with passive exposure to tobacco. Pol Arch Med Wewn 188(12):705–711

    Google Scholar 

  31. Milman N, Pedersen AN (2009) Blood haemoglobin concentrations are higher in smokers and heavy alcohol consumers than in non-smokers and abstainers: should we adjust the reference range? Ann Hematol 88(7):687–694

    Article  PubMed  CAS  Google Scholar 

  32. Scherer G (2006) Carboxyhemoglobin and thiocyanate as biomarkers of exposure to carbon monoxide and hydrogen cyanide in tobacco smoke. Exp Toxicol Pathol 58:101–124

    Article  PubMed  CAS  Google Scholar 

  33. McDonough P, Moffatt RJ (1999) Smoking-induced elevations in blood carboxyhaemoglobin levels. Effect on maximal oxygen uptake. Sports Med 27:275–283

    Article  PubMed  CAS  Google Scholar 

  34. Weitzman M, Cook S, Auinger P, Florin TA, Daniels S, Nguyen M et al (2005) Tobacco smoke exposure is associated with the metabolic syndrome in adolescents. Circulation 112:862–869

    Article  PubMed  CAS  Google Scholar 

  35. Berlin I, Gasior MJ, Moolchan ET (2007) Sex-based and hormonal contraception effects on the metabolism of nicotine among adolescent tobacco-dependent smokers. Nicotine Tob Res 9(4):493–498

    Article  PubMed  CAS  Google Scholar 

  36. von Haehling S, Lainscak M, Doehner W, Ponikowski P, Rosano G, Jordan J et al (2010) Diabetes mellitus, cachexia and obesity in heart failure: rationale and design of the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). J Cachexia Sarcopenia Muscle 1(2):187–194

    Article  Google Scholar 

  37. Fearon K, Evans WJ, Anker SD (2011) Myopenia—a new universal term for muscle wasting. J Cachexia Sarcopenia Muscle 2(1):1–3

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Part of this work has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 241558 (SICA-HF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan von Haehling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebner, N., Földes, G., Szabo, T. et al. Assessment of serum cotinine in patients with chronic heart failure: self-reported versus objective smoking behaviour. Clin Res Cardiol 102, 95–101 (2013). https://doi.org/10.1007/s00392-012-0499-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-012-0499-0

Keywords

Navigation