Skip to main content

Advertisement

Log in

Downregulation of CX3CR1 ameliorates experimental colitis: evidence for CX3CL1-CX3CR1-mediated immune cell recruitment

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

Inflammatory conditions like inflammatory bowel diseases (IBD) are characterized by increased immune cell infiltration. The chemokine ligand CX3CL1 and its receptor CX3CR1 have been shown to be involved in leukocyte adhesion, transendothelial recruitment, and chemotaxis. Therefore, the objective of this study was to describe CX3CL1-CX3CR1-mediated signaling in the induction of immune cell recruitment during experimental murine colitis.

Methods

Acute colitis was induced by dextran sodium sulfate (DSS), and sepsis was induced by injection of lipopolysaccharide (LPS). Serum concentrations of CX3CR1 and CX3CL1 were measured by ELISA. Wild-type and CX3CR1-/- mice were challenged with DSS, and on day 6, intravital microscopy was performed to monitor colonic leukocyte and platelet recruitment. Intestinal inflammation was assessed by disease activity, histopathology, and neutrophil infiltration.

Results

CX3CR1 was upregulated in DSS colitis and LPS-induced sepsis. CX3CR1-/- mice were protected from disease severity and intestinal injury in DSS colitis, and CX3CR1 deficiency resulted in reduced rolling of leukocytes and platelets.

Conclusions

In the present study, we provide evidence for a crucial role of CX3CL1-CX3CR1 in experimental colitis, in particular for intestinal leukocyte recruitment during murine colitis. Our findings suggest that CX3CR1 blockade represents a potential therapeutic strategy for treatment of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baumgart DC, Sandborn WJ (2007) Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369:1641–1657

    Article  CAS  PubMed  Google Scholar 

  2. Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434

    Article  CAS  PubMed  Google Scholar 

  3. Panes J, Granger DN (1998) Leukocyte-endothelial cell interactions: molecular mechanisms and implications in gastrointestinal disease. Gastroenterology 114:1066–1090

    Article  CAS  PubMed  Google Scholar 

  4. Panes J, Perry M, Granger DN (1999) Leukocyte-endothelial cell adhesion: avenues for therapeutic intervention. Br J Pharmacol 126:537–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhong W, Kolls JK, Chen H, McAllister F, Oliver PD, Zhang Z (2008) Chemokines orchestrate leukocyte trafficking in inflammatory bowel disease. Front Biosci 13:1654–1664

    Article  CAS  PubMed  Google Scholar 

  6. Thomas S, Baumgart DC (2012) Targeting leukocyte migration and adhesion in Crohn’s disease and ulcerative colitis. Inflammopharmacology 20:1–18

    Article  CAS  PubMed  Google Scholar 

  7. Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7:243

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fong AM, Robinson LA, Steeber DA, Tedder TF, Yoshie O, Imai T, Patel DD (1998) Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med 188:1413–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644

    Article  CAS  PubMed  Google Scholar 

  10. Haskell CA, Cleary MD, Charo IF (1999) Molecular uncoupling of fractalkine-mediated cell adhesion and signal transduction. Rapid flow arrest of CX3CR1-expressing cells is independent of G-protein activation. J Biol Chem 274:10053–10058

    Article  CAS  PubMed  Google Scholar 

  11. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    Article  CAS  PubMed  Google Scholar 

  12. Kim KW, Vallon-Eberhard A, Zigmond E, Farache J, Shezen E, Shakhar G, Ludwig A, Lira SA, Jung S (2011) In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 118:e156–e167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vowinkel T, Wood KC, Stokes KY, Russell J, Tailor A, Anthoni C, Senninger N, Krieglstein CF, Granger DN (2007) Mechanisms of platelet and leukocyte recruitment in experimental colitis. Am J Physiol Gastrointest Liver Physiol 293:G1054–G1060

    Article  CAS  PubMed  Google Scholar 

  14. Stokes KY, Granger DN (2012) Platelets: a critical link between inflammation and microvascular dysfunction. J Physiol 590:1023–1034

    Article  CAS  PubMed  Google Scholar 

  15. Schafer A, Schulz C, Eigenthaler M, Fraccarollo D, Kobsar A, Gawaz M, Ertl G, Walter U, Bauersachs J (2004) Novel role of the membrane-bound chemokine fractalkine in platelet activation and adhesion. Blood 103:407–412

    Article  PubMed  Google Scholar 

  16. Schulz C, Schafer A, Stolla M, Kerstan S, Lorenz M, von Bruhl ML, Schiemann M, Bauersachs J, Gloe T, Busch DH, Gawaz M, Massberg S (2007) Chemokine fractalkine mediates leukocyte recruitment to inflammatory endothelial cells in flowing whole blood: a critical role for P-selectin expressed on activated platelets. Circulation 116:764–773

    Article  CAS  PubMed  Google Scholar 

  17. Kostadinova FI, Baba T, Ishida Y, Kondo T, Popivanova BK, Mukaida N (2010) Crucial involvement of the CX3CR1-CX3CL1 axis in dextran sulfate sodium-mediated acute colitis in mice. J Leukoc Biol 88:133–143

    Article  CAS  PubMed  Google Scholar 

  18. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694–702

    Article  CAS  PubMed  Google Scholar 

  19. Dieleman LA, Palmen MJ, Akol H, Bloemena E, Pena AS, Meuwissen SG, Van Rees EP (1998) Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol 114:385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Becker F, Potepalov S, Shehzahdi R, Bernas M, Witte M, Abreo F, Traylor J, Orr WA, Tsunoda I, Alexander JS (2015) Downregulation of FoxC2 increased susceptibility to experimental colitis: influence of lymphatic drainage function? Inflamm Bowel Dis 21:1282–1296

    PubMed  PubMed Central  Google Scholar 

  21. Vowinkel T, Mori M, Krieglstein CF, Russell J, Saijo F, Bharwani S, Turnage RH, Davidson WS, Tso P, Granger DN, Kalogeris TJ (2004) Apolipoprotein A-IV inhibits experimental colitis. J Clin Invest 114:260–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Danese S, de la Motte C, Sturm A, Vogel JD, West GA, Strong SA, Katz JA, Fiocchi C (2003) Platelets trigger a CD40-dependent inflammatory response in the microvasculature of inflammatory bowel disease patients. Gastroenterology 124:1249–1264

    Article  CAS  PubMed  Google Scholar 

  23. Nagata K, Tsuji T, Todoroki N, Katagiri Y, Tanoue K, Yamazaki H, Hanai N, Irimura T (1993) Activated platelets induce superoxide anion release by monocytes and neutrophils through P-selectin (CD62). J Immunol 151:3267–3273

    CAS  PubMed  Google Scholar 

  24. Suzuki K, Sugimura K, Hasegawa K, Yoshida K, Suzuki A, Ishizuka K, Ohtsuka K, Honma T, Narisawa R, Asakura H (2001) Activated platelets in ulcerative colitis enhance the production of reactive oxygen species by polymorphonuclear leukocytes. Scand J Gastroenterol 36:1301–1306

    Article  CAS  PubMed  Google Scholar 

  25. Combadiere C, Potteaux S, Gao JL, Esposito B, Casanova S, Lee EJ, Debre P, Tedgui A, Murphy PM, Mallat Z (2003) Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107:1009–1016

    Article  CAS  PubMed  Google Scholar 

  26. Liu P, Patil S, Rojas M, Fong AM, Smyth SS, Patel DD (2006) CX3CR1 deficiency confers protection from intimal hyperplasia after arterial injury. Arterioscler Thromb Vasc Biol 26:2056–2062

    Article  CAS  PubMed  Google Scholar 

  27. Liu P, Yu YR, Spencer JA, Johnson AE, Vallanat CT, Fong AM, Patterson C, Patel DD (2008) CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler Thromb Vasc Biol 28:243–250

    Article  CAS  PubMed  Google Scholar 

  28. Kobayashi T, Okamoto S, Iwakami Y, Nakazawa A, Hisamatsu T, Chinen H, Kamada N, Imai T, Goto H, Hibi T (2007) Exclusive increase of CX3CR1 + CD28-CD4+ T cells in inflammatory bowel disease and their recruitment as intraepithelial lymphocytes. Inflamm Bowel Dis 13:837–846

    Article  PubMed  Google Scholar 

  29. Sans M, Danese S, de la Motte C, de Souza HS, Rivera-Reyes BM, West GA, Phillips M, Katz JA, Fiocchi C (2007) Enhanced recruitment of CX3CR1+ T cells by mucosal endothelial cell-derived fractalkine in inflammatory bowel disease. Gastroenterology 132:139–153

    Article  CAS  PubMed  Google Scholar 

  30. Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–258

    Article  CAS  PubMed  Google Scholar 

  31. Medina-Contreras O, Geem D, Laur O, Williams IR, Lira SA, Nusrat A, Parkos CA, Denning TL (2011) CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J Clin Invest 121:4787–4795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Inui M, Ishida Y, Kimura A, Kuninaka Y, Mukaida N, Kondo T (2011) Protective roles of CX3CR1-mediated signals in toxin A-induced enteritis through the induction of heme oxygenase-1 expression. J Immunol 186:423–431

    Article  CAS  PubMed  Google Scholar 

  33. Longman RS, Diehl GE, Victorio DA, Huh JR, Galan C, Miraldi ER, Swaminath A, Bonneau R, Scherl EJ, Littman DR (2014) CX(3)CR1(+) mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med 211:1571–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang XP, Mattagajasingh S, Su S, Chen G, Cai Z, Fox-Talbot K, Irani K, Becker LC (2007) Fractalkine upregulates intercellular adhesion molecule-1 in endothelial cells through CX3CR1 and the Jak Stat5 pathway. Circ Res 101:1001–1008

    Article  CAS  PubMed  Google Scholar 

  36. Johnson Z, Schwarz M, Power CA, Wells TN, Proudfoot AE (2005) Multi-faceted strategies to combat disease by interference with the chemokine system. Trends Immunol 26:268–274

    Article  CAS  PubMed  Google Scholar 

  37. McDermott DH, Halcox JP, Schenke WH, Waclawiw MA, Merrell MN, Epstein N, Quyyumi AA, Murphy PM (2001) Association between polymorphism in the chemokine receptor CX3CR1 and coronary vascular endothelial dysfunction and atherosclerosis. Circ Res 89:401–407

    Article  CAS  PubMed  Google Scholar 

  38. Moatti D, Faure S, Fumeron F, Amara M, Seknadji P, McDermott DH, Debre P, Aumont MC, Murphy PM, de Prost D, Combadiere C (2001) Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease. Blood 97:1925–1928

    Article  CAS  PubMed  Google Scholar 

  39. McDermott DH, Fong AM, Yang Q, Sechler JM, Cupples LA, Merrell MN, Wilson PW, D'Agostino RB, O'Donnell CJ, Patel DD, Murphy PM (2003) Chemokine receptor mutant CX3CR1-M280 has impaired adhesive function and correlates with protection from cardiovascular disease in humans. J Clin Invest 111:1241–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Ludgera Weber-Koberg for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Vowinkel.

Ethics declarations

All animal protocols were approved by the animal subjects committee, University of Muenster (LANUV permit number: 8.87–50.10.36.09.037) and conducted as outlined by the German Animal Welfare Law.

Grants

This research was funded by a grant (VO 998/3-1) from the German Research Foundation (DFG) to T. Vowinkel.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, F., Holthoff, C., Anthoni, C. et al. Downregulation of CX3CR1 ameliorates experimental colitis: evidence for CX3CL1-CX3CR1-mediated immune cell recruitment. Int J Colorectal Dis 32, 315–324 (2017). https://doi.org/10.1007/s00384-016-2735-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-016-2735-y

Keywords

Navigation