Skip to main content
Log in

Notochord manipulation does not impact oesophageal and tracheal formation from isolated foregut in 3D explant culture

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Background

Tracheo-oesophageal malformations result from disturbed foregut separation during early development. The notochord, a specialised embryonic structure, forms immediately adjacent to the dividing foregut. In the Adriamycin mouse model of oesophageal atresia, foregut and notochord abnormalities co-exist, and the site and severity of foregut malformations closely correlate to the position and extent of the notochord defects. Notochord and foregut abnormalities also co-exist in the Noggin Knockout mouse as well in a small number of human cases. The notochord is a source of powerful molecular signals during early embryogenesis, being particularly important for neural crest development. The influence of notochord signaling on the adjacent foregut is not known. The purpose of this study was to examine the impact of notochord manipulation on foregut separation using a robust 3D explant method for culturing isolated foregut which permits oeosphageal and tracheal formation in vitro.

Methods

Foregut was micro-dissected from embryonic day 9 mice (License B100/4447 Irish Medicines Board), embedded in collagen and cultured for 48 h with native notochord intact (n = 6), notochord removed (n = 10) or additional notochord transplanted from stage matched controls (n = 8). Specimens were analysed for foregut morphology and molecular patterning using immunohistochemistry for Hnf3b (an endoderm marker) and Sox2 (a notochord and oesophageal marker) on cryosections.

Results

Foregut separation into distinct oesophagus and trachea was observed in isolated foregut specimens with or without their native notochord. In specimens with additional notochord transplants, foregut morphology and molecular patterning were comparable to controls whether or not the native notochord was maintained. In particular foregut separation was not disrupted by the transplantation of additional notochord at the dorsal foregut endoderm.

Conclusion

The relationship between the embryonic foregut and notochord is complex and ill-defined; however, the notochord does not contribute essentially to oesophagus and trachea formation beyond E9 in the mouse, and the transplantation of additional notochord does not disrupt foregut separation in 3D explant culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van Straaten HW, Hekking JW, Wiertz-Hoessels EJ, Thors F, Drukker J (1988) Effect of the notochord on the differentiation of a floor plate area in the neural tube of the chick embryo. Anat Embryol (Berl) 177:317–324

    Article  Google Scholar 

  2. Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430

    Article  PubMed  CAS  Google Scholar 

  3. Marti E, Bumcrot DA, Takada R, McMahon AP (1995) Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375:322–325

    Article  PubMed  CAS  Google Scholar 

  4. Hebrok M, Kim SK, Melton DA (1998) Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev 12:1705–1713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Hajduk P, Sato H, Puri P, Murphy P (2011) Abnormal notochord branching is associated with foregut malformations in the adriamycin treated mouse model. PLoS One 6:e27635

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Zorn AM, Wells JM (2009) Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25:221–251

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Wells J, Melton D (1999) Vertebrate endoderm development. Annu Rev Cell Dev Biol 15:393–410

    Article  PubMed  CAS  Google Scholar 

  8. Li Y, Gordon J, Manley NR, Litingtung Y, Chiang C (2008) Bmp4 is required for tracheal formation: a novel mouse model for tracheal agenesis. Dev Biol 322:145–155

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Que J, Okubo T, Goldenring JR, Nam KT, Kurotani R, Morrisey EE, Taranova O, Pevny LH, Hogan BL (2007) Multiple dose dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 134:2521–2531

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Fausett SR, Brunet LJ, Klingensmith J (2014) BMP antagonism by Noggin is required in presumptive notochord cells for mammalian foregut morphogenesis. Dev Biol 391:111–124

    Article  PubMed  CAS  Google Scholar 

  11. Snider P, Simmons O, Rogers R, Young R, Gosnell M, Conway SJ (2011) Notochordal and foregut abnormalities correlate with elevated neural crest apoptosis in Patch embryos. Birth Defects Res A Clin Mol Teratol 91:551–564

    Article  PubMed  CAS  Google Scholar 

  12. Elliott GB, Tredwell SJ, Elliott KA (1970) The notochord as an abnormal organizer in production of congenital intestinal defect. Am J Roentgenol Radium Ther Nucl Med 110:628–634

    Article  PubMed  CAS  Google Scholar 

  13. Bentley JF, Smith JR (1960) Developmental posterior enteric remnants and spinal malformations: the split notochord syndrome. Arch Dis Child 35:76–86

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Meller JL, Loeff DS, Reyes HM (1989) A variant of the split notochord syndrome. J Pediatr Surg 24:733–735

    Article  PubMed  CAS  Google Scholar 

  15. Tremblay KD, Zaret KS (2005) Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol 280:87–99

    Article  PubMed  CAS  Google Scholar 

  16. Desai TJ, Chen F, Lu J, Qian J, Niederreither K, Dolle P, Chambon P, Cardoso WV (2006) Distinct roles for retinoic acid receptors alpha and beta in early lung morphogenesis. Dev Biol 291:12–24

    Article  PubMed  CAS  Google Scholar 

  17. Theiler K (1989) The house mouse: atlas of embryonic development. Springer, Berlin, Heidelberg, New York

  18. Ioannides AS, Massa V, Ferraro E, Cecconi F, Spitz L, Henderson DJ, Copp AJ (2010) Foregut separation and tracheo-oesophageal malformations: the role of tracheal outgrowth, dorso-ventral patterning and programmed cell death. Dev Biol 337:351–362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Dawrant MJ, Giles S, Bannigan J, Puri P (2007) Adriamycin mouse model: a variable but reproducible model of tracheo-oesophageal malformations. Pediatr Surg Int 23:469–472

    Article  PubMed  Google Scholar 

  20. Fan CM, Tessier-Lavigne M (1994) Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 79:1175–1186

    Article  PubMed  CAS  Google Scholar 

  21. Hajduk P, May A, Puri P, Murphy P (2012) The effect of adriamycin exposure on the notochord of mouse embryos. Birth Defects Res B Dev Reprod Toxicol 95:175–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Puri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mc Laughlin, D., Murphy, P. & Puri, P. Notochord manipulation does not impact oesophageal and tracheal formation from isolated foregut in 3D explant culture. Pediatr Surg Int 32, 29–35 (2016). https://doi.org/10.1007/s00383-015-3809-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-015-3809-6

Keywords

Navigation