Skip to main content

Advertisement

Log in

Anorectal malformation: the etiological factors

  • Review Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Anorectal malformation (ARM) is a congenital anomaly commonly encountered in pediatric surgery practice. Although surgical procedures correct the anatomical anomalies, the post-operative bowel function is not universally satisfactory. The etiology of ARM remains unclear. In this review, we summarize the current understanding of the genetic and epigenetic factors contributing to the pathogenesis of ARM, based on published animal models, human genetics and epidemiological researches. Appreciation of these factors may be helpful in the management of ARM in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Endo M, Hayashi A, Ishihara M et al (1999) Analysis of 1,992 patients with anorectal malformations over the past two decades in Japan. Steering Committee of Japanese Study Group of Anorectal Anomalies. J Pediatr Surg 34(3):435–441

    CAS  PubMed  Google Scholar 

  2. Stoll C, Alembik Y, Dott B et al (2007) Associated malformations in patients with anorectal anomalies. Eur J Med Genet 50(4):281–290

    CAS  PubMed  Google Scholar 

  3. Nah SA, Ong CC, Lakshmi NK et al (2012) Anomalies associated with anorectal malformations according to the Krickenbeck anatomic classification. J Pediatr Surg 47(12):2273–2278

    PubMed  Google Scholar 

  4. Mirza B, Ijaz L, Saleem M et al (2011) Anorectal malformations in neonates. Afr J Paediatr Surg 8(2):151–154

    PubMed  Google Scholar 

  5. Stoll C, Alembik Y, Roth MP et al (1997) Risk factors in congenital anal atresias. Ann Genet 40(4):197–204

    CAS  PubMed  Google Scholar 

  6. Chen QJ, Jia HM, Zhang SW et al (2009) Apoptosis during the development of pelvic floor muscle in anorectal malformation rats. J Pediatr Surg 44(10):1884–1891

    CAS  PubMed  Google Scholar 

  7. Guan K, Li H, Fan Y et al (2009) Defective development of sensory neurons innervating the levator ani muscle in fetal rats with anorectal malformation. Birth Defects Res A Clin Mol Teratol 85(7):583–587

    CAS  PubMed  Google Scholar 

  8. Theisen A, Shaffer LG (2010) Disorders caused by chromosome abnormalities. Appl Clin Genet 3:159–174

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Marcelis C, de Blaauw I, Brunner H (2011) Chromosomal anomalies in the etiology of anorectal malformations: a review. Am J Med Genet A 155A(11):2692–2704

    PubMed  Google Scholar 

  10. Belloni E, Martucciello G, Verderio D et al (2000) Involvement of the HLXB9 homeobox gene in Currarino syndrome. Am J Hum Genet 66(1):312–319

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Lynch SA, Wang Y, Strachan T et al (2000) Autosomal dominant sacral agenesis: Currarino syndrome. J Med Genet 37(8):561–566

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Marles SL, Greenberg CR, Persaud TV et al (1992) New familial syndrome of unilateral upper eyelid coloboma, aberrant anterior hairline pattern, and anal anomalies in Manitoba Indians. Am J Med Genet 42(6):793–799

    CAS  PubMed  Google Scholar 

  13. Slavotinek AM, Baranzini SE, Schanze D et al (2011) Manitoba-oculo-tricho-anal (MOTA) syndrome is caused by mutations in FREM1. J Med Genet 48(6):375–382

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Carmi R, Abeliovich D, Bar-Ziv J et al (1980) Malformation syndrome associated with small extra chromosome. Am J Med Genet 5(1):101–107

    CAS  PubMed  Google Scholar 

  15. Budarf ML, McDermid HE, Sellinger B et al (1991) Isolation and regional localization of 35 unique anonymous DNA markers for human chromosome 22. Genomics 10(4):996–1002

    CAS  PubMed  Google Scholar 

  16. Robin NH, Feldman GJ, Aronson AL et al (1995) Opitz syndrome is genetically heterogeneous, with one locus on Xp22, and a second locus on 22q11.2. Nat Genet 11(4):459–461

    CAS  PubMed  Google Scholar 

  17. Brooks JK, Leonard CO, Zawadzki JK et al (1998) Pituitary macroadenoma and cranial osteoma in a manifesting heterozygote with the Opitz G/BBB syndrome. Am J Med Genet 80(3):291–293

    CAS  PubMed  Google Scholar 

  18. Robin NH, Opitz JM, Muenke M (1996) Opitz G/BBB syndrome: clinical comparisons of families linked to Xp22 and 22q, and a review of the literature. Am J Med Genet 62(3):305–317

    CAS  PubMed  Google Scholar 

  19. Hall JG, Pallister PD, Clarren SK et al (1980) Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus and postaxial polydactyly–a new syndrome? Part I: clinical, causal, and pathogenetic considerations. Am J Med Genet 7(1):47–74

    CAS  PubMed  Google Scholar 

  20. Kang S, Allen J, Graham JJ et al (1997) Linkage mapping and phenotypic analysis of autosomal dominant Pallister-Hall syndrome. J Med Genet 34(6):441–446

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Van Maldergem L, Siitonen HA (2006) Revisiting the craniosynostosis-radial ray hypoplasia association: Baller-Gerold syndrome caused by mutations in the RECQL4 gene. J Med Genet 43(2):148–152

    PubMed Central  PubMed  Google Scholar 

  22. Pelias MZ, Superneau DW, Thurmon TF (1981) Brief clinical report: a sixth report (eighth case) of craniosynostosis-radial aplasia (Baller-Gerold) syndrome. Am J Med Genet 10(2):133–139

    CAS  PubMed  Google Scholar 

  23. Arron JR, Winslow MM, Polleri A et al (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441(7093):595–600

    CAS  PubMed  Google Scholar 

  24. Risheg H, Graham JJ, Clark RD et al (2007) A recurrent mutation in MED12 leading to R961W causes Opitz-Kaveggia syndrome. Nat Genet 39(4):451–453

    CAS  PubMed  Google Scholar 

  25. El-Hattab AW, Skorupski JC, Hsieh MH et al (2010) OEIS complex associated with chromosome 1p36 deletion: a case report and review. Am J Med Genet A 152A(2):504–511

    PubMed  Google Scholar 

  26. Torres R, Levitt MA, Tovilla JM et al (1998) Anorectal malformations and Down’s syndrome. J Pediatr Surg 33(2):194–197

    CAS  PubMed  Google Scholar 

  27. Lynch SA, Bond PM, Copp AJ et al (1995) A gene for autosomal dominant sacral agenesis maps to the holoprosencephaly region at 7q36. Nat Genet 11(1):93–95

    CAS  PubMed  Google Scholar 

  28. Currarino G, Coln D, Votteler T (1981) Triad of anorectal, sacral, and presacral anomalies. Am J Roentgen 137:395–398

    CAS  Google Scholar 

  29. Ross AJ, Ruiz-Perez V, Wang Y et al (1998) A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis. Nature Genet 20:358–361

    CAS  PubMed  Google Scholar 

  30. Hagan DM, Ross AJ, Strachan T et al (2000) Mutation analysis and embryonic expression of the HLXB9 Currarino syndrome gene. Am J Hum Genet 66:1504–1515 (0. Note: Erratum: Am J Hum Genet 67: 769 only, 2000)

  31. Urioste M, Garcia-Andrade MC, Valle L et al (2004) Malignant degeneration of presacral teratoma in the Currarino anomaly. Am J Med Genet A 128A(3):299–304

    PubMed  Google Scholar 

  32. Garcia-Barcelo MM, Lui VC, So MT, Miao X et al (2009) MNX1 (HLXB9) mutations in Currarino patients. J Pediatr Surg 44(10):1892–1898

    PubMed  Google Scholar 

  33. Harrison KA, Thaler J, Pfaff SL et al (1999) Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat Genet 23(1):71–75

    CAS  PubMed  Google Scholar 

  34. Townes PL, Brocks ER (1972) Hereditary syndrome of imperforate anus with hand, foot, and ear anomalies. J Pediat 81:321–326

    CAS  PubMed  Google Scholar 

  35. Kurnit DM, Steele MW, Pinsky L et al (1978) Autosomal dominant transmission of a syndrome of anal, ear, renal, and radial congenital malformations. J. Pediat. 93:270–273

    CAS  PubMed  Google Scholar 

  36. Kohlhase J, Wischermann A, Reichenbach H et al (1998) Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 18(1):81–83

    CAS  PubMed  Google Scholar 

  37. Engels S, Kohlhase J, McGaughran J (2000) A SALL1 mutation causes a branchio-oto-renal syndrome-like phenotype. J Med Genet 37(6):458–460

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Kosaki R, Fujimaru R, Samejima H et al (2007) Wide phenotypic variations within a family with SALL1 mutations: isolated external ear abnormalities to Goldenhar syndrome. Am J Med Genet A 143A(10):1087–1090

    CAS  PubMed  Google Scholar 

  39. Sudo Y, Numakura C, Abe A et al (2010) Phenotypic variability in a family with Townes-Brocks syndrome. J Hum Genet 55(8):550–551

    PubMed  Google Scholar 

  40. Khoury MJ, Cordero JF, Greenberg F et al (1983) A population study of the VACTERL association: evidence for its etiologic heterogeneity. Pediatrics 71(5):815–820

    CAS  PubMed  Google Scholar 

  41. Garcia-Barcelo MM, Wong KK, Lui VC et al (2008) Identification of a HOXD13 mutation in a VACTERL patient. Am J Med Genet A 146A(24):3181–3185

    CAS  PubMed  Google Scholar 

  42. Solomon BD, Pineda-Alvarez DE, Raam MS et al (2010) Evidence for inheritance in patients with VACTERL association. Hum Genet 127(6):731–733

    PubMed Central  PubMed  Google Scholar 

  43. Solomon BD, Patel A, Cheung SW et al (2011) VACTERL association and mitochondrial dysfunction. Birth Defects Res A Clin Mol Teratol 91(3):192–194

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Schramm C, Draaken M, Bartels E et al (2011) De novo microduplication at 22q11.21 in a patient with VACTERL association. Eur J Med Genet 54(1):9–13

    PubMed  Google Scholar 

  45. Nagasaki K, Itoh M, Naoki O et al (2011) Two cases of 22q11.2 deletion syndrome with anorectal anomalies and growth retardation. J Pediatr Endocrinol Metab 24(7–8):585–586

    PubMed  Google Scholar 

  46. Schramm C, Draaken M, Tewes G et al (2011) Autosomal-dominant non-syndromic anal atresia: sequencing of candidate genes, array-based molecular karyotyping, and review of the literature. Eur J Pediatr 170(6):741–746

    PubMed  Google Scholar 

  47. Wong EH, Ng CL, Lui VC et al (2013) Gene network analysis of candidate Loci for human anorectal malformations. PLoS One 8(8):e69142

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Carter TC, Kay DM et al (2013) Anorectal atresia and variants at predicted regulatory sites in candidate genes. Ann Hum Genet 77(1):31–46

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Moore SW (2013) Associations of anorectal malformations and related syndromes. Pediatr Surg Int 29(7):665–676

    PubMed  Google Scholar 

  50. Kimmel SG, Mo R, Hui CC et al (2000) New mouse models of congenital anorectal malformations. J Pediatr Surg 35(2):227–230 (discussion 230-1)

    CAS  PubMed  Google Scholar 

  51. Ming JE, Roessler E, Muenke M (1998) Human developmental disorders and the Sonic hedgehog pathway. Mol Med Today 4(8):343–349

    CAS  PubMed  Google Scholar 

  52. Seifert AW, Bouldin CM, Choi KS et al (2009) Multiphasic and tissue-specific roles of sonic hedgehog in cloacal septation and external genitalia development. Development 136(23):3949–3957

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Roberts DJ, Smith DM, Goff DJ et al (1998) Epithelial-mesenchymal signaling during the regionalization of the chick gut. Development 125(15):2791–2801

    CAS  PubMed  Google Scholar 

  54. Mo R, Kim JH, Zhang J et al (2001) Anorectal malformations caused by defects in sonic hedgehog signaling. Am J Pathol 159(2):765–774

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Zhang J, Zhang ZB, Gao H et al (2009) Down-regulation of SHH/BMP4 signalling in human anorectal malformations. J Int Med Res 37(6):1842–1850

    CAS  PubMed  Google Scholar 

  56. Huang Y, Zhang P, Zheng S et al (2014) Hypermethylation of SHH in the pathogenesis of congenital anorectal malformations. J Pediatr Surg 49(9):1400–1404

    PubMed  Google Scholar 

  57. Mullor JL, Dahmane N, Sun T et al (2001) Wnt signals are targets and mediators of Gli function. Curr Biol 11(10):769–773

    CAS  PubMed  Google Scholar 

  58. Brewster R, Mullor JL, Ruiz IAA (2000) Gli2 functions in FGF signaling during antero-posterior patterning. Development 127(20):4395–4405

    PubMed  Google Scholar 

  59. Litingtung Y, Chiang C (2000) Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nat Neurosci 3(10):979–985

    CAS  PubMed  Google Scholar 

  60. Regl G, Kasper M, Schnidar H et al (2004) Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res 64(21):7724–7731

    CAS  PubMed  Google Scholar 

  61. Musani V, Gorry P, Basta-Juzbasic A et al (2006) Mutation in exon 7 of PTCH deregulates SHH/PTCH/SMO signaling: possible linkage to WNT. Int J Mol Med 17(5):755–759

    CAS  PubMed  Google Scholar 

  62. Sun LS, Li XF, Li TJ (2008) PTCH1 and SMO gene alterations in keratocystic odontogenic tumors. J Dent Res 87(6):575–579

    CAS  PubMed  Google Scholar 

  63. Moon RT, Brown JD, Torres M (1997) WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 13(4):157–162

    CAS  PubMed  Google Scholar 

  64. Danielson KG, Pillarisetti J, Cohen IR et al (1995) Characterization of the complete genomic structure of the human WNT-5A gene, functional analysis of its promoter, chromosomal mapping, and expression in early human embryogenesis. J Biol Chem 270(52):31225–31234

    CAS  PubMed  Google Scholar 

  65. Jonsson M, Andersson T (2001) Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. J Cell Sci 114(Pt 11):2043–2053

    CAS  PubMed  Google Scholar 

  66. Katoh M (2008) WNT signaling in stem cell biology and regenerative medicine. Curr Drug Targets 9(7):565–570

    CAS  PubMed  Google Scholar 

  67. Jia H, Chen Q, Zhang T et al (2011) Wnt5a expression in the hindgut of fetal rats with chemically induced anorectal malformations–studies in the ETU rat model. Int J Colorectal Dis 26(4):493–499

    PubMed  Google Scholar 

  68. Tai CC, Sala FG, Ford HR et al (2009) Wnt5a knock-out mouse as a new model of anorectal malformation. J Surg Res 156(2):278–282

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Guo C, Sun Y, Guo C et al (2014) Dkk1 in the peri-cloaca mesenchyme regulates formation of anorectal and genitourinary tracts. Dev Biol 385(1):41–51

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Hunt P, Krumlauf R (1992) Hox codes and positional specification in vertebrate embryonic axes. Annu Rev Cell Biol 8:227–256

    CAS  PubMed  Google Scholar 

  71. Fromental-Ramain C, Warot X, Lakkaraju S et al (1996) Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development 122(2):461–472

    CAS  PubMed  Google Scholar 

  72. Yahagi N, Kosaki R, Ito T et al (2004) Position-specific expression of Hox genes along the gastrointestinal tract. Congenit Anom (Kyoto) 44(1):18–26

    CAS  Google Scholar 

  73. Kawazoe Y, Sekimoto T, Araki M et al (2002) Region-specific gastrointestinal Hox code during murine embryonal gut development. Dev Growth Differ 44(1):77–84

    CAS  PubMed  Google Scholar 

  74. Illig R, Fritsch H, Schwarzer C (2013) Spatio-temporal expression of HOX genes in human hindgut development. Dev Dyn 242(1):53–66

    CAS  PubMed  Google Scholar 

  75. Laufer E, Nelson CE, Johnson RL et al (1994) Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79(6):993–1003

    CAS  PubMed  Google Scholar 

  76. McPherron AC, Lawler AM, Lee SJ (1999) Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet 22(3):260–264

    CAS  PubMed  Google Scholar 

  77. Warot X, Fromental-Ramain C, Fraulob V et al (1997) Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development 124(23):4781–4791

    CAS  PubMed  Google Scholar 

  78. Kondo T, Dolle P, Zakany J et al (1996) Function of posterior HoxD genes in the morphogenesis of the anal sphincter. Development 122(9):2651–2659

    CAS  PubMed  Google Scholar 

  79. Pyati UJ, Cooper MS, Davidson AJ et al (2006) Sustained Bmp signaling is essential for cloaca development in zebrafish. Development 133(11):2275–2284

    CAS  PubMed  Google Scholar 

  80. Suzuki K, Adachi Y, Numata T et al (2012) Reduced BMP signaling results in hindlimb fusion with lethal pelvic/urogenital organ aplasia: a new mouse model of sirenomelia. PLoS One 7(9):e43453

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Sasaki Y, Iwai N, Tsuda T et al (2004) Sonic hedgehog and bone morphogenetic protein 4 expressions in the hindgut region of murine embryos with anorectal malformations. J Pediatr Surg 39(2):170–173 (discussion 170-3)

    PubMed  Google Scholar 

  82. Bottcher RT, Niehrs C (2005) Fibroblast growth factor signaling during early vertebrate development. Endocr Rev 26(1):63–77

    PubMed  Google Scholar 

  83. Gambarini AG, Miranda MT, Viviani W et al (1996) Structure and function of fibroblast growth factor. Braz J Med Biol Res 29(7):835–839

    CAS  PubMed  Google Scholar 

  84. Kondoh K, Kobayashi K, Nishida H (2003) Suppression of macho-1-directed muscle fate by FGF and BMP is required for formation of posterior endoderm in ascidian embryos. Development 130(14):3205–3216

    CAS  PubMed  Google Scholar 

  85. Dessimoz J, Opoka R, Kordich JJ et al (2006) FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev 123(1):42–55

    CAS  PubMed  Google Scholar 

  86. Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470(7332):105–109

    PubMed Central  PubMed  Google Scholar 

  87. Yin SJ, Tang XB, Li FF et al (2013) Spatiotemporal expression of fibroblast growth factor 10 in human hindgut and anorectal development. Cells Tissues Organs 198(1):28–34

    CAS  PubMed  Google Scholar 

  88. Fairbanks TJ, De Langhe S, Sala FG et al (2004) Fibroblast growth factor 10 (Fgf10) invalidation results in anorectal malformation in mice. J Pediatr Surg 39(3):360–365 (discussion 360-5)

    PubMed  Google Scholar 

  89. Kruger V, Khoshvaghti M, Reutter H et al (2008) Investigation of FGF10 as a candidate gene in patients with anorectal malformations and exstrophy of the cloaca. Pediatr Surg Int 24(8):893–897

    PubMed  Google Scholar 

  90. Tsuda T, Iwai N, Deguchi E et al (2011) PCSK5 and GDF11 expression in the hindgut region of mouse embryos with anorectal malformations. Eur J Pediatr Surg 21(4):238–241

    CAS  PubMed  Google Scholar 

  91. Ince TA, Cviko AP, Quade BJ et al (2002) p63 Coordinates anogenital modeling and epithelial cell differentiation in the developing female urogenital tract. Am J Pathol 161(4):1111–1117

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Su P, Yuan Y, Huang Y et al (2013) Anorectal malformation associated with a mutation in the P63 gene in a family with split hand-foot malformation. Int J Colorectal Dis 28(12):1621–1627

    PubMed Central  PubMed  Google Scholar 

  93. Chawengsaksophak K, Beck F (1996) Chromosomal localization of cdx2, a murine homologue of the Drosophila gene caudal, to mouse chromosome 5. Genomics 34(2):270–271

    CAS  PubMed  Google Scholar 

  94. Zhang T, Tang XB, Wang LL et al (2013) Mutations and down-regulation of CDX1 in children with anorectal malformations. Int J Med Sci 10(2):191–197

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Jia H, Chen Q, Zhang T et al (2012) The expression analysis of Notch-1 and Jagged-2 during the development of the hindgut in rat embryos with ethylenethiourea induced anorectal malformations. J Surg Res 172(1):131–136

    CAS  PubMed  Google Scholar 

  96. van Rooij IA, Wijers CH, Rieu PN et al (2010) Maternal and paternal risk factors for anorectal malformations: a Dutch case-control study. Birth Defects Res A Clin Mol Teratol 88(3):152–158

    PubMed  Google Scholar 

  97. Lin S, Munsie JP, Herdt-Losavio ML et al (2012) Maternal asthma medication use and the risk of selected birth defects. Pediatrics 129(2):e317–e324

    PubMed  Google Scholar 

  98. Tinker SC, Reefhuis J, Dellinger AM et al (2011) Maternal injuries during the periconceptional period and the risk of birth defects, National Birth Defects Prevention Study, 1997–2005. Paediatr Perinat Epidemiol 25(5):487–496

    PubMed  Google Scholar 

  99. Parker SE, Werler MM, Shaw GM et al (2012) Dietary glycemic index and the risk of birth defects. Am J Epidemiol 176(12):1110–1120

    PubMed Central  PubMed  Google Scholar 

  100. Huang Y, Zheng S (2011) The effect of vitamin A deficiency during pregnancy on anorectal malformations. J Pediatr Surg 46(7):1400–1405

    PubMed  Google Scholar 

  101. Myers MF, Li S, Correa-Villasenor A et al (2001) Folic acid supplementation and risk for imperforate anus in China. Am J Epidemiol 154(11):1051–1056

    CAS  PubMed  Google Scholar 

  102. Waller DK, Shaw GM, Rasmussen SA et al (2007) Arch Pediatr Adolesc Med 161(8):745–750

    PubMed  Google Scholar 

  103. Stothard KJ, Tennant PW, Bell R et al (2009) Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA 301(6):636–650

    CAS  PubMed  Google Scholar 

  104. Wijers CH, van Rooij IA, Bakker MK et al (2013) Anorectal malformations and pregnancy-related disorders: a registry-based case-control study in 17 European regions. BJOG 120(9):1066–1074

    CAS  PubMed  Google Scholar 

  105. Sheridan E, Wright J, Small N et al (2013) Risk factors for congenital anomaly in a multiethnic birth cohort: an analysis of the Born in Bradford study. Lancet 382(9901):1350–1359

    PubMed  Google Scholar 

  106. Reefhuis J, Honein MA, Schieve LA et al (2009) Assisted reproductive technology and major structural birth defects in the United States. Hum Reprod 24(2):360–366

    CAS  PubMed  Google Scholar 

  107. Miller EA, Manning SE, Rasmussen SA et al (2009) Maternal exposure to tobacco smoke, alcohol and caffeine, and risk of anorectal atresia: National Birth Defects Prevention Study 1997–2003. Paediatr Perinat Epidemiol 23(1):9–17

    PubMed  Google Scholar 

  108. Castilla EE, Lopez-Camelo JS, Campana H (1999) Altitude as a risk factor for congenital anomalies. Am J Med Genet 86(1):9–14

    CAS  PubMed  Google Scholar 

  109. Zwink N, Jenetzky E, Brenner H (2011) Parental risk factors and anorectal malformations: systematic review and meta-analysis. Orphanet J Rare Dis 6:25

    PubMed Central  PubMed  Google Scholar 

  110. Pasternak B, Svanstrom H, Molgaard-Nielsen D et al (2013) Metoclopramide in pregnancy and risk of major congenital malformations and fetal death. JAMA 310(15):1601–1611

    CAS  PubMed  Google Scholar 

  111. Carter TC, Druschel CM, Romitti PA et al (2008) Antifungal drugs and the risk of selected birth defects. Am J Obstet Gynecol 198(2):191.e1–191.e7

    Google Scholar 

  112. Kubota Y, Shimotake T, Iwai N (2000) Congenital anomalies in mice induced by etretinate. Eur J Pediatr Surg 10(4):248–251

    CAS  PubMed  Google Scholar 

  113. Pitera JE, Smith VV, Woolf AS et al (2001) Embryonic gut anomalies in a mouse model of retinoic Acid-induced caudal regression syndrome: delayed gut looping, rudimentary cecum, and anorectal anomalies. Am J Pathol 159(6):2321–2329

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Arana J, Villanueva A, Guarch R et al (2001) Anorectal atresia. An experimental model in the rat. Eur J Pediatr Surg 11(3):192–195

    CAS  PubMed  Google Scholar 

  115. Dawrant MJ, Giles S, Bannigan J et al (2007) Adriamycin produces a reproducible teratogenic model of vertebral, anal, cardiovascular, tracheal, esophageal, renal, and limb anomalies in the mouse. J Pediatr Surg 42(10):1652–1658

    PubMed  Google Scholar 

  116. Jiang JT, Sun WL, Jing YF et al (2011) Prenatal exposure to di-n-butyl phthalate induces anorectal malformations in male rat offspring. Toxicology 290(2–3):322–326

    PubMed  Google Scholar 

  117. Zhu H, Kartiko S, Finnell RH (2009) Importance of gene-environment interactions in the etiology of selected birth defects. Clin Genet 75(5):409–423

    CAS  PubMed  Google Scholar 

  118. Mandhan P, Beasley S, Hale T et al (2006) Sonic hedgehog expression in the development of hindgut in ETU-exposed fetal rats. Pediatr Surg Int 22(1):31–36

    PubMed  Google Scholar 

  119. Mandhan P, Quan QB, Beasley S et al (2006) Sonic hedgehog, BMP4, and Hox genes in the development of anorectal malformations in Ethylenethiourea-exposed fetal rats. J Pediatr Surg 41(12):2041–2045

    PubMed  Google Scholar 

  120. Dan Z, Bo ZZ, Tao Z et al (2010) Hoxd-13 expression in the development of hindgut in ethylenethiourea-exposed fetal rats. J Pediatr Surg 45(4):755–761

    PubMed  Google Scholar 

  121. Wong EH, Cui L, Ng CL et al (2013) Genome-wide copy number variation study in anorectal malformations. Hum Mol Genet 22(3):621–631

    CAS  PubMed  Google Scholar 

  122. Draaken M, Prins W, Zeidler C et al (2012) Involvement of the WNT and FGF signaling pathways in non-isolated anorectal malformations: sequencing analysis of WNT3A, WNT5A, WNT11, DACT1, FGF10, FGFR2 and the T gene. Int J Mol Med 30(6):1459–1464

    CAS  PubMed  Google Scholar 

  123. Garcia-Barcelo MM, Chi-Hang LV et al (2008) Mutational analysis of SHH and GLI3 in anorectal malformations. Birth Defects Res A Clin Mol Teratol 82(9):644–648

    CAS  PubMed  Google Scholar 

  124. Moore SW, Zaahl MG (2007) Association of endothelin-beta receptor (EDNRB) gene variants in anorectal malformations. J Pediatr Surg 42(7):1266–1270

    PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing, People’s Republic of China. The author would like to thank Dr. Long Li and Dr. Wei Cheng for their support and mentorship. We also thank Dr. S. White from Monash Institute of Medical Research for his research advice.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, L. & Cheng, W. Anorectal malformation: the etiological factors. Pediatr Surg Int 31, 795–804 (2015). https://doi.org/10.1007/s00383-015-3685-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-015-3685-0

Keywords

Navigation