Skip to main content

Advertisement

Log in

Nitrofen increases total retinol levels in placenta during lung morphogenesis in the nitrofen model of congenital diaphragmatic hernia

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Background

It has been shown that pulmonary retinol level is decreased during lung morphogenesis in the nitrofen-induced PH in congenital diaphragmatic hernia (CDH). Placenta has a major role in the retinol homeostasis in fetal life. Since there is no fetal retinol synthesis, maternal retinol has to cross the placenta. Placenta is the main fetal retinol store where retinol is stored in retinyl-ester formation. Trophoblasts have to produce its own retinol-binding protein (RBP) for retinol transport from placenta to fetus. Recently, we demonstrated that trophoblastic RBP expression is decreased in the nitrofen model of CDH. The aim of this study was to investigate the retinol transfer from mother to the placenta in nitrofen model of CDH.

Methods

Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetal placenta harvested on D21 and divided into two groups: control (n = 11) and nitrofen with CDH (n = 11). Retinoid levels in placenta were measured using HPLC. Immunohistochemistry was performed to evaluate trophoblastic expression of main RSP genes.

Results

Total retinol levels in the placenta were significantly increased in CDH placenta compared to control placenta. The retinyl-ester levels were significantly increased in CDH placenta compared to control placenta. Markedly, decreased immunoreactivity of retinoid signaling pathway was observed in trophoblast cells in CDH compared to control placenta.

Conclusions

Increased placental retinol levels show that retinol is transferred from mother to placenta and stored in the placenta in nitrofen model of CDH during lung morphogenesis. Nitrofen may disturb the mobilization of retinol from placenta to fetal circulation causing PH in CDH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Colvin J, Bower C, Dickinson JE, Sokol J (2005) Outcomes of congenital diaphragmatic hernia: a population-based study in Western Australia. Pediatrics 116(3):e356–e363

    Article  PubMed  Google Scholar 

  2. Stege G, Fenton A, Jaffray B (2003) Nihilism in the 1990s: the true mortality of congenital diaphragmatic hernia. Pediatrics 112(3 Pt 1):532–535

    Article  PubMed  Google Scholar 

  3. Gosche JR, Islam S, Boulanger SC (2005) Congenital diaphragmatic hernia: searching for answers. Am J Surg 190(2):324–332

    Article  PubMed  Google Scholar 

  4. Robinson PD, Fitzgerald DA (2007) Congenital diaphragmatic hernia. Paediatr Respir Rev 8(4):323–334 (quiz 334–325)

    Article  PubMed  Google Scholar 

  5. Montedonico S, Nakazawa N, Puri P (2008) Congenital diaphragmatic hernia and retinoids: searching for an etiology. Pediatr Surg Int 24(7):755–761

    Article  PubMed  PubMed Central  Google Scholar 

  6. Noble BR, Babiuk RP, Clugston RD, Underhill TM, Sun H, Kawaguchi R, Walfish PG, Blomhoff R, Gundersen TE, Greer JJ (2007) Mechanisms of action of the congenital diaphragmatic hernia-inducing teratogen nitrofen. Am J Physiol Lung Cell Mol Physiol 293(4):L1079–L1087

    Article  PubMed  CAS  Google Scholar 

  7. Clagett-Dame M, DeLuca HF (2002) The role of vitamin A in mammalian reproduction and embryonic development. Annu Rev Nutr 22:347–381

    Article  PubMed  CAS  Google Scholar 

  8. Wassef L, Quadro L (2011) Uptake of dietary retinoids at the maternal-fetal barrier: in vivo evidence for the role of lipoprotein lipase and alternative pathways. J Biol Chem 286(37):32198–32207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Spiegler E, Kim YK, Wassef L, Shete V, Quadro L (2012) Maternal-fetal transfer and metabolism of vitamin A and its precursor beta-carotene in the developing tissues. Biochim Biophys Acta 1821(1):88–98

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Sapin V, Chaib S, Blanchon L, Alexandre-Gouabau MC, Lemery D, Charbonne F, Gallot D, Jacquetin B, Dastugue B, Azais-Braesco V (2000) Esterification of vitamin A by the human placenta involves villous mesenchymal fibroblasts. Pediatr Res 48(4):565–572

    Article  PubMed  CAS  Google Scholar 

  11. Monaco HL, Rizzi M, Coda A (1995) Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science 268(5213):1039–1041

    Article  PubMed  CAS  Google Scholar 

  12. Quadro L, Hamberger L, Colantuoni V, Gottesman ME, Blaner WS (2003) Understanding the physiological role of retinol-binding protein in vitamin A metabolism using transgenic and knockout mouse models. Mol Asp Med 24(6):421–430

    Article  CAS  Google Scholar 

  13. Quadro L, Hamberger L, Gottesman ME, Colantuoni V, Ramakrishnan R, Blaner WS (2004) Transplacental delivery of retinoid: the role of retinol-binding protein and lipoprotein retinyl ester. Am J Physiol Endocrinol Metab 286(5):E844–E851

    Article  PubMed  CAS  Google Scholar 

  14. Morriss-Kay GM, Ward SJ (1999) Retinoids and mammalian development. Int Rev Cytol 188:73–131

    Article  PubMed  CAS  Google Scholar 

  15. Sapin V, Ward SJ, Bronner S, Chambon P, Dolle P (1997) Differential expression of transcripts encoding retinoid binding proteins and retinoic acid receptors during placentation of the mouse. Dev Dyn 208(2):199–210

    Article  PubMed  CAS  Google Scholar 

  16. Kam RK, Deng Y, Chen Y, Zhao H (2012) Retinoic acid synthesis and functions in early embryonic development. Cell Biosci 2(1):11

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Nakazawa N, Montedonico S, Takayasu H, Paradisi F, Puri P (2007) Disturbance of retinol transportation causes nitrofen-induced hypoplastic lung. J Pediatr Surg 42(2):345–349

    Article  PubMed  Google Scholar 

  18. Paik J, Vogel S, Quadro L, Piantedosi R, Gottesman M, Lai K, Hamberger L, Vieira Mde M, Vieira Mde M, Blaner WS (2004) Vitamin A: overlapping delivery pathways to tissues from the circulation. J Nutr 134(1):276S–280S

    PubMed  CAS  Google Scholar 

  19. Kato Y, Braunstein GD (1991) Retinoic acid stimulates placental hormone secretion by choriocarcinoma cell lines in vitro. Endocrinology 128(1):401–407

    Article  PubMed  CAS  Google Scholar 

  20. Nakazawa N, Takayasu H, Montedonico S, Puri P (2007) Altered regulation of retinoic acid synthesis in nitrofen-induced hypoplastic lung. Pediatr Surg Int 23(5):391–396

    Article  PubMed  Google Scholar 

  21. O’Byrne SM, Wongsiriroj N, Libien J, Vogel S, Goldberg IJ, Baehr W, Palczewski K, Blaner WS (2005) Retinoid absorption and storage is impaired in mice lacking lecithin:retinol acyltransferase (LRAT). J Biol Chem 280(42):35647–35657

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gallot D, Marceau G, Coste K, Hadden H, Robert-Gnansia E, Laurichesse H, Dechelotte PJ, Labbe A, Dastugue B, Lemery D et al (2005) Congenital diaphragmatic hernia: a retinoid-signaling pathway disruption during lung development? Birth Defects Res A Clin Mol Teratol 73(8):523–531

    Article  PubMed  CAS  Google Scholar 

  23. Beurskens LW, Tibboel D, Lindemans J, Duvekot JJ, Cohen-Overbeek TE, Veenma DC, de Klein A, Greer JJ, Steegers-Theunissen RP (2010) Retinol status of newborn infants is associated with congenital diaphragmatic hernia. Pediatrics 126(4):712–720

    Article  PubMed  Google Scholar 

  24. Kutasy B, Gosemann JH, Doi T, Fujiwara N, Friedmacher F, Puri P (2012) Nitrofen interferes with trophoblastic expression of retinol-binding protein and transthyretin during lung morphogenesis in the nitrofen-induced congenital diaphragmatic hernia model. Pediatr Surg Int 28(2):143–148

    Article  PubMed  Google Scholar 

  25. Hosotani K, Kitagawa M (2003) Improved simultaneous determination method of beta-carotene and retinol with saponification in human serum and rat liver. J Chromatogr B Anal Technol Biomed Life Sci 791(1–2):305–313

    Article  CAS  Google Scholar 

  26. Moulas ANZI, Taitzoglou IA, Tsantarliotou MP, Botsoglou NA (2003) Simultaneous determination of retinoic acid, retinol, and retinyl palmitate in ram plasma by liquid chromatography. J Liq Chromatogr 26:559–572

    Article  CAS  Google Scholar 

  27. Kutasy B, Gosemann JH, Duess JW, Puri P (2013) Increased trophoblastic apoptosis mediated by neutrophil gelatinase-associated lipocalin (NGAL) activation in the nitrofen model of congenital diaphragmatic hernia. Pediatr Surg Int 29(1):25–31

    Article  PubMed  Google Scholar 

  28. Furukawa S, Hayashi S, Usuda K, Abe M, Hagio S, Ogawa I (2011) Toxicological pathology in the rat placenta. J Toxicol Pathol 24(2):95–111

    Article  PubMed  PubMed Central  Google Scholar 

  29. Quadro L, Hamberger L, Gottesman ME, Wang F, Colantuoni V, Blaner WS, Mendelsohn CL (2005) Pathways of vitamin A delivery to the embryo: insights from a new tunable model of embryonic vitamin A deficiency. Endocrinology 146(10):4479–4490

    Article  PubMed  CAS  Google Scholar 

  30. Ismadi SD, Olson JA (1982) Dynamics of the fetal distribution and transfer of vitamin A between rat fetuses and their mother. Int J Vitam Nutr Res 52(2):112–119

    PubMed  CAS  Google Scholar 

  31. Kim YK, Wassef L, Hamberger L, Piantedosi R, Palczewski K, Blaner WS, Quadro L (2008) Retinyl ester formation by lecithin: retinol acyltransferase is a key regulator of retinoid homeostasis in mouse embryogenesis. J Biol Chem 283(9):5611–5621

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Wendling O, Chambon P, Mark M (1999) Retinoid X receptors are essential for early mouse development and placentogenesis. Proc Natl Acad Sci USA 96(2):547–551

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Guilbert TW, Gebb SA, Shannon JM (2000) Lung hypoplasia in the nitrofen model of congenital diaphragmatic hernia occurs early in development. Am J Physiol Lung Cell Mol Physiol 279(6):L1159–L1171

    PubMed  CAS  Google Scholar 

  34. Jay PY, Bielinska M, Erlich JM, Mannisto S, Pu WT, Heikinheimo M, Wilson DB (2007) Impaired mesenchymal cell function in Gata4 mutant mice leads to diaphragmatic hernias and primary lung defects. Dev Biol 301(2):602–614

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Doi T, Hajduk P, Puri P (2009) Upregulation of Slit-2 and Slit-3 gene expressions in the nitrofen-induced hypoplastic lung. J Pediatr Surg 44(11):2092–2095

    Article  PubMed  Google Scholar 

  36. Doi T, Puri P (2009) Up-regulation of Wnt5a gene expression in the nitrofen-induced hypoplastic lung. J Pediatr Surg 44(12):2302–2306

    Article  PubMed  Google Scholar 

  37. Ruttenstock E, Doi T, Dingemann J, Puri P (2011) Prenatal administration of retinoic acid upregulates insulin-like growth factor receptors in the nitrofen-induced hypoplastic lung. Birth Defects Res B Dev Reprod Toxicol 92(2):148–151

    Article  PubMed  CAS  Google Scholar 

  38. Kling DE, Cavicchio AJ, Sollinger CA, Schnitzer JJ, Kinane TB, Newburg DS (2010) Nitrofen induces apoptosis independently of retinaldehyde dehydrogenase (RALDH) inhibition. Birth Defects Res B Dev Reprod Toxicol 89(3):223–232

    PubMed  CAS  Google Scholar 

  39. Manson JM (1986) Mechanism of nitrofen teratogenesis. Environ Health Perspect 70:137–147

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Brown TJ, Manson JM (1986) Further characterization of the distribution and metabolism of nitrofen in the pregnant rat. Teratology 34(2):129–139

    Article  PubMed  CAS  Google Scholar 

  41. Clugston RD, Zhang W, Greer JJ (2010) Early development of the primordial mammalian diaphragm and cellular mechanisms of nitrofen-induced congenital diaphragmatic hernia. Birth Defects Res A Clin Mol Teratol 88(1):15–24

    PubMed  CAS  Google Scholar 

  42. Kutasy B, Friedmacher F, Duess JW, Puri P (2014) Prenatal administration of retinoic acid increases the trophoblastic insulin-like growth factor 2 protein expression in the nitrofen model of congenital diaphragmatic hernia. Pediatr Surg Int 30(2):137–142

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Puri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutasy, B., Pes, L., Friedmacher, F. et al. Nitrofen increases total retinol levels in placenta during lung morphogenesis in the nitrofen model of congenital diaphragmatic hernia. Pediatr Surg Int 30, 1017–1022 (2014). https://doi.org/10.1007/s00383-014-3525-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-014-3525-7

Keywords

Navigation