Skip to main content

Advertisement

Log in

In vitro CO2-induced ROS production impairs cell cycle in SH-SY5Y neuroblastoma cells

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

We evaluated in vitro the role of CO2-induced oxidative stress on the expression of proteins involved in cell-cycle regulation of neuroblastoma cells.

Methods

SH-SY5Y cells were exposed to CO2 at 15 mmHg pressure (100 %) for 4 h and then moved to normal condition for 24 h. Control cells were maintained in 5 % CO2 for the same time. ROS production was determined by fluorescent staining with H2DCF-DA. DNA damage was measured by COMET assay. p53 protein expression was analyzed by western blot and confocal laser scanning microscopy was used to evaluate its sub-cellular localization. Cyclin expression was quantified by real-time PCR and western blot. Cell-cycle analysis was performed by FACS.

Results

CO2 incubation was associated with an increase in ROS production (p < 0.01), cell DNA damage mainly after 24 h (12 % increase of tail DNA content and 4-fold increase of tail length) and a significant up-regulation in p53 expression at 24 h with an intense nuclear staining. In CO2-treated cells, we observed an S-phase arrest in correlation with a reduction of cyclin B1 expression.

Conclusions

In vitro-simulated pneumoperitoneum environment with CO2 induces oxidative stress and cell DNA damage, leading to p53 up-regulation involved in cell-cycle arrest of neuroblastoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. De Lijster MS, Bergevoet RM, van Dalen EC et al (2012) Minimally invasive surgery versus open surgery for the treatment of solid abdominal and thoracic neoplasms in children. Cochrane Database Syst Rev. doi:10.1002/14651858.CD008403

    PubMed  Google Scholar 

  2. Van Roy N, De Preter K, Hoebeeck J et al (2009) The emerging molecular pathogenesis of neuroblastoma: implication for improved risk assessment and targeted therapy. Genome Med 1:74

    Article  PubMed  Google Scholar 

  3. Heloury Y, Muthucumaru M, Panabokke G et al (2012) Minimally invasive adrenalectomy in children. J Pediatr Surg 47:415–421

    Article  PubMed  Google Scholar 

  4. Metzelder ML, Kuebler JF, Shimotakahara A et al (2008) CO2 pneumoperitoneum increases systemic but not local tumor spread after intraperitoneal murine neuroblastoma spillage in mice. Surg Endosc 22:2648–2653

    Article  PubMed  Google Scholar 

  5. Schmidt AI, Reismann M, Kubler JF et al (2006) Exposure to carbon dioxide and helium reduces in vitro proliferation of pediatric tumor cells. Pediatr Surg Int 22:72–77

    Article  PubMed  Google Scholar 

  6. Reismann M, Lehmann D, Quandte M et al (2008) Carbon dioxide does not affect the methylation status of prognostic important oncogenes Rassf1A and DCR2 in neuroblastoma cells. Pediatr Surg Int 24:1327–1330

    Article  PubMed  Google Scholar 

  7. Reismann M, Wehrmann F, Schukfeh N et al (2009) Carbon dioxide, hypoxia and low pH lead to overexpression of c-myc and HMGB-1 oncogenes in neuroblastoma cells. Eur J Pediatr Surg 19:224–227

    Article  PubMed  CAS  Google Scholar 

  8. Yu Y, Kuebler J, Groos S et al (2010) Carbon dioxide modifies the morphology and function of mesothelial cells and facilitates transepithelial neuroblastoma cell migration. Pediatr Surg Int 26:29–36

    Article  PubMed  CAS  Google Scholar 

  9. Arsalani-Zadeh R, Ullah S, Khan S et al (2011) Oxidative stress in laparoscopic versus open abdominal surgery: a systematic review. J Surg Res 169:e59–e68

    Article  PubMed  CAS  Google Scholar 

  10. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    Article  PubMed  CAS  Google Scholar 

  11. Sammour T, Mittal A, Loveday BPT et al (2009) Systematic review of oxidative stress associated with pneumoperitoneum. British J Surg 96:836–850

    Article  CAS  Google Scholar 

  12. Barzilai A, Yamamoto KI (2004) DNA damage responses to oxidative stress. DNA Repair (Amst) 3:1109–1115

    Article  CAS  Google Scholar 

  13. Ridgway PF, Smith A, Ziprin P et al (2002) Pneumoperitoneum augmented tumor invasiveness is abolished by matrix metalloprotease blockade. Surg Endosc 16:533–536

    Article  PubMed  CAS  Google Scholar 

  14. Condello S, Currò M, Ferlazzo N et al (2011) Agmatine effects on mitochondrial membrane potential and NF-kappaB activation protect against rotenone-induced cell damage in human neuronal-like SH-SY5Y cells. J Neurochem 116:67–75

    Article  PubMed  CAS  Google Scholar 

  15. Di Pietro A, Visalli G, La Maestra S et al (2008) Biomonitoring of DNA damage in peripheral blood lymphocytes of subjects with dental restorative fillings. Mutat Res 650:115–122

    Article  PubMed  Google Scholar 

  16. Pattyn F, Speleman F, De Paepe A et al (2003) RTPrimerDB: the real time PCR primer and probe database. Nucleic Acids Res 31:122–123

    Article  PubMed  CAS  Google Scholar 

  17. Novitsky YV, Litwin DEM, Callery MP (2004) The net immunologic advantage of laparoscopic surgery. Surg Endosc 18:1411–1419

    Article  PubMed  CAS  Google Scholar 

  18. Ure BM, Niewold TA, Bax NM et al (2002) Peritoneal, systemic and distant organ inflammatory response are reduced by laparoscopic approach and carbon dioxide versus air. Surg Endosc 16:836–842

    Article  PubMed  CAS  Google Scholar 

  19. Montalto AS, Bitto A, Irrera N et al (2012) CO2 pneumoperitoneum impact on early liver and lung cytokine expression in a rat model of abdominal sepsis. Surg Endosc 26:984–989

    Article  PubMed  Google Scholar 

  20. Scotting PJ, Walker DA, Perilongo G (2005) Childhood solid tumors: a developmental disorder. Nat Rev Cancer 5:481–488

    Article  PubMed  CAS  Google Scholar 

  21. Kamijo T, Nakagawara A (2012) Molecular and genetic bases of neuroblastoma. Int J Clin Oncol 17:190–195

    Article  PubMed  CAS  Google Scholar 

  22. Sharabi K, Lecuona E, Helenius IT et al (2009) Sensing, physiological effects and molecular response to elevated CO2 levels in eukaryotes. J Cell Mol Med 13:4304–4318

    Article  PubMed  CAS  Google Scholar 

  23. Caputo F, Vegliante R, Ghibelli L (2012) Redox modulation of the DNA damage response. Biochem Pharmacol 84(10):1292–1306

    Google Scholar 

  24. Lin CP, Choi YJ, Hicks GG et al (2012) The emerging functions of the p53-miRNA network in stem cell biology. Cell Cycle 11:2063–2072

    Article  PubMed  CAS  Google Scholar 

  25. Bentes de Souza AM, Wang CC, Chu CY et al (2004) In vitro exposure to carbon dioxide induces oxidative stress in human peritoneal mesothelial cells. Hum Reprod 19:1281–1286

    Article  PubMed  CAS  Google Scholar 

  26. Mansfield KD, Guzy RD, Pan Y et al (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 1:393–399

    Article  PubMed  CAS  Google Scholar 

  27. Li C, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 282:C227–C241

    PubMed  CAS  Google Scholar 

  28. Laurent A, Nicco C, Chereau C et al (2005) Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65:948–956

    PubMed  CAS  Google Scholar 

  29. Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11:3013–3069

    Article  PubMed  CAS  Google Scholar 

  30. Marengo B, Raffaghello L, Pistoia V et al (2005) Reactive oxygen species: biological stimuli of neuroblastoma cell response. Cancer Lett 228:111–116

    Article  PubMed  CAS  Google Scholar 

  31. Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14

    Article  PubMed  Google Scholar 

  32. Bindra RS, Crosby ME, Glazer PM (2007) Regulation of DNA repair in hypoxic cancer cells. Cancer Metastasis Rev 26:249–260

    Article  PubMed  CAS  Google Scholar 

  33. Lahav G (2008) Oscillations by the p53-Mdm2 feedback loop. Adv Exp Med Biol 641:28–38

    Article  PubMed  CAS  Google Scholar 

  34. Brooks CL, Gu W (2006) p53 ubiquitination: Mdm2 and beyond. Mol Cell 21:307–315

    Article  PubMed  CAS  Google Scholar 

  35. Tian XJ, Liu F, Zhang XP et al (2012) A two-step mechanism for cell fate decision by coordination of nuclear and mitochondrial p53 activities. PLoS ONE 7:e38164

    Article  PubMed  CAS  Google Scholar 

  36. Innocente SA, Abrahamson JL, Cogswell JP et al (1999) p53 regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci USA 96:2147–2152

    Article  PubMed  CAS  Google Scholar 

  37. MacLachlan TK, Dash BC, Dicker DT et al (2000) Repression of BRCA1 through a feedback loop involving p53. J Biol Chem 275:31869–31875

    Article  PubMed  CAS  Google Scholar 

  38. Shen M, Feng Y, Gao C et al (2004) Detection of cyclin b1 expression in G(1)-phase cancer cell lines and cancer tissues by post sorting Western blot analysis. Cancer Res 64:1607–1610

    Article  PubMed  CAS  Google Scholar 

  39. Singh RK, Dorf L, DeMartino A et al (2011) Oral RKS262 reduces tumor burden in a neuroblastoma xenograft animal model and mediates cytotoxicity through SAPK/JNK and ROS activation in vitro. Cance Biol Ther 11:1036–1045

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelo Romeo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montalto, A.S., Currò, M., Russo, T. et al. In vitro CO2-induced ROS production impairs cell cycle in SH-SY5Y neuroblastoma cells. Pediatr Surg Int 29, 51–59 (2013). https://doi.org/10.1007/s00383-012-3206-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-012-3206-3

Keywords

Navigation