Skip to main content

Advertisement

Log in

CWRF performance at downscaling China climate characteristics

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The performance of the regional Climate-Weather Research and Forecasting model (CWRF) for downscaling China climate characteristics is evaluated using a 1980–2015 simulation at 30 km grid spacing driven by the ECMWF Interim reanalysis (ERI). It is shown that CWRF outperforms the popular Regional Climate Modeling system (RegCM4.6) in key features including monsoon rain bands, diurnal temperature ranges, surface winds, interannual precipitation and temperature anomalies, humidity couplings, and 95th percentile daily precipitation. Even compared with ERI, which assimilates surface observations, CWRF better represents the geographic distributions of seasonal mean climate and extreme precipitation. These results indicate that CWRF may significantly enhance China climate modeling capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Banzon V, Smith TM, Chin TM, Liu C, Hankins W (2016) A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst Sci Data 8:165–176

    Google Scholar 

  • Bao J, Feng J, Wang Y (2015) Dynamical downscaling simulation and future projection of precipitation over China. J Geophys Res 120:8227–8243. https://doi.org/10.1002/2015JD023275

    Google Scholar 

  • Bonan GB, Levis S, Kergoat L, Oleson KW (2002) Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models. Global Biogeochem Cycles 16:5. https://doi.org/10.1029/2000GB001360

    Google Scholar 

  • Bretherton CS, Park S (2009) A new moist turbulence parameterization in the Community Atmosphere Model. J Climate 22:3422–3448

    Google Scholar 

  • Bucchignani E, Montesarchio M, Cattaneo L, Manzi MP, Mercogliano P (2014) Regional climate modeling over China with COSMO-CLM: Performance assessment and climate projections. J Geophys Res 119(12):151–112170

    Google Scholar 

  • Cha D-H, Jin CS, Moon JH, Lee DK (2016) Improvement of regional climate simulation of East Asian summer monsoon by coupled air-sea interaction and large-scale nudging. Int J Climatol 36:334–345

    Google Scholar 

  • Chan JC, Liu Y, Chow KC, DING Y, Lau WK, Chan KL (2004) Design of a regional climate model for the simulation of South China summer monsoon rainfall. J Meteorol Soc Jpn Ser II 82(6):1645–1665

    Google Scholar 

  • Chen W, Jiang Z, Li L, Yiou P (2011) Simulation of regional climate change under the IPCC A2 scenario in southeast China. Clim Dyn 36:491–507

    Google Scholar 

  • Chen L, Liang X-Z, DeWitt D, Samel AN, Wang JXL (2016) Seasonal prediction of US precipitation and temperature by the nested CWRF-ECHAM system. Clim Dyn 46:879–896

    Google Scholar 

  • Choi HI, Liang X-Z (2010) Improved terrestrial hydrologic representation in mesoscale land surface models. J Hydrometeorol 11:797–809

    Google Scholar 

  • Choi HI, Kumar P, Liang X-Z (2007) Three-dimensional volume-averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability. Water Resour Res 43:W04414. https://doi.org/10.1029/2006WR005134 15 pp.

    Google Scholar 

  • Choi HI, Liang X-Z, Kumar P (2013) A conjunctive surface-subsurface flow representation for mesoscale land surface models. J Hydrometeorol 14:1421–1442

    Google Scholar 

  • Chou M-D, Suarez MJ (1999) A solar radiation parameterization for atmospheric studies. [Last revision on March 2002] Technical Report Series on Global Modeling and Data Assimilation. M. J. Suarez (Ed.), NASA/TM-1999-104606, Vol. 15, Goddard Space Flight Center, Greenbelt, MD, 42 pp

  • Chou M-D, Suarez MJ, Liang X-Z, Yan MM-H (2001) A thermal infrared radiation parameterization for atmospheric studies. [Last revision on July 2002] Technical Report Series on Global Modeling and Data Assimilation, M.J. Suarez (Ed.), NASA/TM-2001-104606, Vol. 19, Goddard Space Flight Center, Greenbelt, MD, 56 pp

  • Chow KC, Tong H-W, Chan JCL (2008) Water vapor sources associated with the early summer precipitation over China. Clim Dyn 30:497–517

    Google Scholar 

  • Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: The PRUDENCE project. Clim Change 81:1–6

    Google Scholar 

  • Dai Y, Zeng X, Dickinson RE, Baker I, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Houser PR, Niu G, Oleson KW, Schlosser CA, Yang Z-L (2003) The common land model. Bull Am Meteorol Soc 84:1013–1023

    Google Scholar 

  • Dai Y, Dickinson RE, Wang Y-P (2004) A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J Climate 17:2281–2299

    Google Scholar 

  • Daly C, Neilson RP, Phillips DL (1994) A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Meteorol Soc 137:553–597

    Google Scholar 

  • Fang YJ, Zhang YC, Huang AN, Li B (2013) Seasonal and intraseasonal variations of East Asian summer monsoon precipitation simulated by a regional air–sea coupled model. Adv Atmos Sci 30(2):315–329

    Google Scholar 

  • Feng JM, Fu CB (2006) Inter-comparison of 10-year precipitation simulated by several RCMs for Asia. Adv Atmos Sci 23:531–542

    Google Scholar 

  • Feng JM, Wang YL, Fu CB (2011) Simulation of extreme climate events over China with different regional climate models. Atmos Oceanic Sci Lett 4:47–56

    Google Scholar 

  • Fischer T, Menz C, Su B, Scholten T (2013) Simulated and projected climate extremes in the Zhujiang River Basin, South China, using the regional climate model COSMO-CLM. Int J Climatol 33:2988–3001

    Google Scholar 

  • Fu CB, Wang SY, Xiong Z, Gutowski WJ, Lee DK, McGregor JL, Sato Y, Kato H, Kim JW, Suh MS (2005) Regional climate model intercomparison project for Asia. Bull Am Meteorol Soc 86:257–266

    Google Scholar 

  • Gao X-J, Zhao ZC, Ding YH, Huang RH, Giorgi F (2001) Climate change due to greenhouse effects in China as simulated by a regional climate model. Adv Atmos Sci 18:1224–1230

    Google Scholar 

  • Gao X-J, Zhao ZC, Giorgi F (2002) Changes of extreme events in regional climate simulations over East Asia. Adv Atmos Sci 19:927–942

    Google Scholar 

  • Gao X-J, Luo Y, Lin WT, Zhao ZC, Giorgi F (2003) Simulation of effects of landuse change on climate in China by a regional climate model. Adv Atmos Sci 20:583–592

    Google Scholar 

  • Gao X-J, Xu Y, Zhao ZC, Pal JS, Giorgi F (2006) On the role of resolution and topography in the simulation of East Asia precipitation. Theor Appl Climatol 86:173–185

    Google Scholar 

  • Gao X-J, Shi Y, Song R, Giorgi F, Wang Y, Zhang D (2008) Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM. Meteorol Atmos Phys 100:73–86

    Google Scholar 

  • Gao X-J, Shi Y, Giorgi F (2011) A high resolution simulation of climate change over China. Sci China Earth Sci 54(3):462–472

    Google Scholar 

  • Gao X-J, Shi Y, Zhang D, Wu J, Giorgi F, Ji Z, Wang Y (2012) Uncertainties in monsoon precipitation projections over China: results from two high-resolution RCM simulations. Clim Res 52:213–226. https://doi.org/10.3354/cr01084

    Google Scholar 

  • Gao X-J, Wang M-L, Giorgi F (2013) Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0. Atmos Oceanic Sci Lett 6:381–386. https://doi.org/10.3878/j.issn.1674-2834.13.0029

    Google Scholar 

  • Gao Y, Xu J, Chen D (2015) Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979–2011. J Climate 28:2823–2841

    Google Scholar 

  • Gao X-J, Shi Y, Giorgi F (2016) Comparison of convective parameterizations in RegCM4 experiments over China with CLM as the land surface model. Atmos Ocean Sci Lett. https://doi.org/10.1080/16742834.2016.1172938

    Google Scholar 

  • Giorgi F (2006) Regional climate modeling: status and perspectives. J Phys IV France 139:101–118

    Google Scholar 

  • Giorgi F, Gutowski WJ (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40:467–490

    Google Scholar 

  • Giorgi F, Marinucci MR, Bates G (1993a) Development of a second generation regional climate model (RegCM2). I. Boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813

    Google Scholar 

  • Giorgi F, Marinucci MR, Bates G, DeCanio G (1993b) Development of a second generation regional climate model (RegCM2). II. Convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, LC Brankovic (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Res 52:7–29

  • Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech, Boulder (Note NCAR/TN-398 + STR), 121 pp

  • Gu HH, Wang GL, Yu ZB, Mei R, Tang JP, Wang SY (2012) Assessment on impact of climate change on East and South Asia using the RegCM4 regional climate model. Clim Change 114(7):301–317

    Google Scholar 

  • Guo J, Huang G, Wang X, Lin Q (2017) Investigating future precipitation changes over China through a high-resolution regional climate model ensemble. Earth’s Future. https://doi.org/10.1002/2016EF000433

    Google Scholar 

  • Han W, Zhai P, 2015: Three cluster methods in regionalization of temperature zones in China. Clim Environ Res, 20(1):111–118 (in Chinese)

    Google Scholar 

  • Holtslag AAM, Boville BA (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Clim 6:1825–1842

    Google Scholar 

  • Holtslag AAM, De Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575

    Google Scholar 

  • Hu BY, Tang JP, Wang SY (2013) Evaluation and projection of extreme events over China under IPCC A1B scenario by MM5v3 model. Chin J Geophys 56(7):2195–2206 (in Chinese)

    Google Scholar 

  • Huang W-R, Chan JCL, Au-Yeung AYM (2013) Regional climate simulations of summer diurnal rainfall variations over East Asia and Southeast China. Clim Dyn 40:1625–1642. https://doi.org/10.1007/s00382-012-1457-2

    Google Scholar 

  • Huang D, Zhu J, Zhang Y, Huang Y, Kuang X (2016) Assessment of summer monsoon precipitation derived from five reanalysis datasets over East Asia. QJR Meteorol Soc 142:108–119. https://doi.org/10.1002/qj.2634

    Google Scholar 

  • Hui P, Tang J, Wang S, Wu J, Kang Y, 2014: Future climate projection under IPCC A1B scenario in the source region of Yellow River with complex topography using RegCM3. J Geophys Res Atmos, 119(11)205–11222, https://doi.org/10.1002/2014JD021992

    Google Scholar 

  • Hwang J-N, Lay S-R, Lippman A (1994) Nonparametric multivariate density estimation: a comparative study. IEEE Trans Signal Process 42(10):2795–2810

    Google Scholar 

  • Ji Z, Kang S (2015) Evaluation of extreme climate events using a regional climate model for China. Int J Climtol 35:888–902

    Google Scholar 

  • Kahn RA, Gaitley BJ, Martonchik JV, Diner DJ, Crean KA, Holben B, 2005: Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J Geophys Res, 110, D10S04. https://doi.org/10.1029/2004JD004706

    Google Scholar 

  • Kahn RA, Garay MJ, Nelson DL, Yau KK, Bull MA, Gaitley BJ, Martonchik JV, Levy RC (2007) Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies. J Geophys Res 112:D18205. https://doi.org/10.1029/2006JD008175

    Google Scholar 

  • Kang H-S, Hong S-Y (2008) Sensitivity of the simulated East Asian summer monsoon climatology to four convective parameterization schemes. J Geophys Res 113:D15119. https://doi.org/10.1029/2007JD009692

    Google Scholar 

  • Kang H-S, Cha D-H, Lee D-K (2005) Evaluation of the mesoscale model/land surface model (MM5/LSM) coupled model for East Asian summer monsoon simulations. J Geophys Res 110:D10105. https://doi.org/10.1029/2004JD005266

    Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech, Boulder. 143 pp

  • Kumar SV, Reichle RH, Peters-Lidard CD, Koster RD, Zhan X, Crow WT, Eylander JB, Houser PR (2008) A land surface data assimilation framework using the land information system: description and applications. Adv Water Resour 31:1419–1432

    Google Scholar 

  • Lee JW, Hong SY, Chang EC, Suh MS, Kang HS (2014) Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Clim Dyn 42(3–4):733–747

    Google Scholar 

  • Li W, Guo W, Xue Y, Fu C, Qiu B (2015) Sensitivity of a regional climate model to land surface parameterization schemes for East Asian summer monsoon simulation. Clim Dyn. https://doi.org/10.1007/s00382-015-2964-8

    Google Scholar 

  • Li Q, Wang S, Lee D-K, Tang J, Niu X, Hui P, Gutowski WJ Jr, Dairaku K, McGregor JL, Katzfey J, Gao X, Wu J, Hong S-Y, Wang Y, Sasaki H (2016) Building Asian climate change scenario by multi-regional climate models ensemble. Part II: mean precipitation. Int J Climatol 36:4253–4264

    Google Scholar 

  • Liang X-Z, Zhang F (2013) The Cloud-Aerosol-Radiation (CAR) ensemble modeling system. Atmos Chem Phys 13:8335–8364

    Google Scholar 

  • Liang X-Z, Kunkel KE, Samel AN (2001) Development of a regional climate model for US Midwest applications. Part 1: Sensitivity to buffer zone treatment. J Clim 14:4363–4378

    Google Scholar 

  • Liang X-Z, Li L, Dai A, Kunkel KE (2004a) Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys Res Lett 31:L24208. https://doi.org/10.1029/2004GL021054

    Google Scholar 

  • Liang X-Z, Li L, Kunkel KE, Ting M, Wang JXL (2004b) Regional climate model simulation of US precipitation during 1982–2002. Part 1: Annual cycle. J Clim 17:3510–3528

    Google Scholar 

  • Liang X-Z, Choi H, Kunkel KE, Dai Y, Joseph E, Wang JXL, Kumar P (2005a) Surface boundary conditions for mesoscale regional climate models. Earth Interact 9:1–28

    Google Scholar 

  • Liang X-Z, Xu M, Gao W, Kunkel KE, Slusser J, Dai Y, Min Q, Houser PR, Rodell M, Schaaf CB, Gao F (2005b) Development of land surface albedo parameterization bases on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J Geophys Res 110:D11107. https://doi.org/10.1029/2004JD005579

    Google Scholar 

  • Liang X-Z, Xu M, Choi HI, Kunkel KE, Rontu L, Geleyn J-F, Müller MD, Joseph E, Wang JXL (2006) Development of the regional Climate-Weather Research and Forecasting model (CWRF): Treatment of subgrid topography effects. In: Proceedings of the 7th Annual WRF User’s Workshop, Boulder, CO, June 19–22, 5 pp

  • Liang X-Z, Xu M, Kunkel KE, Grell GA, Kain J (2007) Regional climate model simulation of U.S.-Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. J Clim 20:5201–5207

    Google Scholar 

  • Liang X-Z, Xu M, Yuan X, Ling T, Choi HI, Zhang F, Chen L, Liu S, Su S, Qiao F, He Y, Wang JXL, Kunkel KE, Gao W, Joseph E, Morris V, Yu T-W, Dudhia J, Michalakes J (2012) Regional Climate-weather research and forecasting model (CWRF). Bull Am Meteorol Soc 93:1363–1387

    Google Scholar 

  • Ling T-J,X-Z, Liang M, Xu Z, Wang, Wang B (2011) A multilevel ocean mixed-layer model for 2-dimension applications. Acta Oceanol Sin 33(03):1–10

    Google Scholar 

  • Ling T-J, Xu M, Liang X-Z, Wang JXL, Noh Y (2015) A multi-level ocean mixed layer model resolving the diurnal cycle: development and validation. J Adv Model Earth Syst 7:1680–1692

    Google Scholar 

  • Liu S, Liang X-Z, Gao W, Zhang H (2008) Climate-weather research and forecasting model (CWRF) application in China: domain optimization. Chinese J Atmos Sci 32:457–468

    Google Scholar 

  • Liu S, Gao W, Xu M, Wang X, Liang X-Z (2009) Regional climate model simulation of China summer precipitation using an optimal ensemble of cumulus parameterization schemes. Front Earth Sci 3(2):248–257. https://doi.org/10.1007/s11707-009-0022-8

    Google Scholar 

  • Liu S, Liang X-Z, Gao W, He Y, Ling T (2011) Regional climate model simulations of the 1998 summer China flood: Dependence on initial and lateral boundary conditions. Open Atmos Sci J 5:96–105

    Google Scholar 

  • Liu S, Gao W, Liang X-Z (2013) A regional climate model downscaling projection of China future climate change. Clim Dyn 41:1871–1884. https://doi.org/10.1007/s00382-012-1632-5

    Google Scholar 

  • Liu D, Wang G, Mei R, Yu Z, Gu H (2014) Diagnosing the strength of land–atmosphere coupling at subseasonal to seasonal time scales in Asia. J Hydrometeorol 15:320–339

    Google Scholar 

  • Liu S, Wang JXL, Liang X-Z, Morris V, Fine SS (2016) A hybrid approach to improve US seasonal climate outlook skills at the regional scale. Clim Dyn 46:483–494

    Google Scholar 

  • Ma JH, Wang HJ, Fan K (2015) Dynamic downscaling of summer precipitation prediction over China in 1998 using WRF and CCSM4. Adv Atmos Sci 32(5):577–584

    Google Scholar 

  • Marcella MP, Eltahir EAB (2012) Modeling the summertime climate of Southwest Asia: The role of land surface processes in shaping the climate of semiarid regions. J Clim 25:704–719

    Google Scholar 

  • Mearns LO, Arritt RW, Biner S, Bukovsky M, McGinnis S, Sain S, Caya D, Correia J, Flori D, Gutowski WJ, Takle ES, Jones R, Leung R, Moufouma-Okia W, McDaniel L, Nunes AMB, Qian Y, Roads JO, Sloan L, Snyder M (2012) The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull Am Meteorol Soc 93:1337–1362

    Google Scholar 

  • Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Samuelsson P, Sylla MB, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25:6057–6078

    Google Scholar 

  • Niu X, Wang S, Tang J, Lee D-K, Gao X, Wu J, Hong S, Gutowski WJ, McGregor J (2015) Multimodel ensemble projection of precipitation in eastern China under A1B emission scenario. J Geophys Res Atmos 120:9965–9980

    Google Scholar 

  • Oh S-G, Park J-H, Lee S-H, Suh M-S (2014) Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J Geophys Res Atmos 119:2913–2927. https://doi.org/10.1002/2013JD020693

    Google Scholar 

  • Oleson KW, Lawrence DM, Bonan GB, Drewniak B, Huang M, Koven CD, Levis S, Li F, Riley WJ, Subin ZM, Swenson SC, Thornton PE, Bozbiyik A, Fisher R, Heald CL, Kluzek E, Lamarque J-F, Lawrence PJ, Leung LR, Lipscomb W, Muszala S, Ricciuto DM, Sacks W, Sun Y, Tang J, Yang Z-L (2013) Improvements to the community land model and their impact on the hydrological cycle. NCAR Technical Note, Boulder, (NCAR/TN-503 + STR), 420p

    Google Scholar 

  • Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J Geophy Res 105:29579–29594

    Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RO, Sloan LC, Steinerand AL (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409

    Google Scholar 

  • Park S, Bretherton CS (2009) The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J Climate 22:3449–3469

    Google Scholar 

  • Qiao F, Liang X-Z (2015) Effects of cumulus parameterizations on predictions of summer flood in the Central United States. Clim Dyn 45:727–744

    Google Scholar 

  • Qiao F, Liang X-Z, 2016a: Effects of cumulus parameterization closures on summer precipitation simulation over the United States coastal oceans. J Adv Model Earth Syst, https://doi.org/10.1002/2015MS000621

    Google Scholar 

  • Qiao F, Liang X-Z (2016b) Effects of cumulus parameterization closures on simulations of summer precipitation over the continental United States. Clim Dyn. https://doi.org/10.1007/s00382-016-3338-6

    Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Google Scholar 

  • Rinke A, Dethloff K, Cassano JJ, Christensen JH, Curry JA, Du P, Girard E, Haugen J-E, Jacob D, Jones CG, ltzow MK, Laprise R, Lynch AH, Pfeifer S, Serreze MC, Shaw MJ, Tjernström M, Wyser K, Žagar M (2006) Evaluation of an ensemble of Arctic regional climate models: Spatiotemporal fields during the SHEBA year. Clim Dyn 26:459–472

    Google Scholar 

  • Roads J, Chen S, Cocke S, Druyan L, Fulakeza M, LaRow T, Lonergan P, Qian J-H, Zebiak S (2003) International Research Institute/Applied Research Centers (IRI/ARCs) regional model intercomparison over South America. J Geophys Res 108(D14):4425. https://doi.org/10.1029/2002JD003201

    Google Scholar 

  • Rontu L (2006) A study on parameterization of orography-related momentum fluxes in a synoptic-scale NWP model. Tellus 58:69–81

    Google Scholar 

  • Sato T, Xue Y (2013) Validating a regional climate model’s downscaling ability for East Asian summer monsoonal interannual variability. Clim Dyn 41:2411–2426

    Google Scholar 

  • Shi Y, Gao XJ, Wang YG et al (2009) Simulation and projection of monsoon rainfall and rain patterns over eastern China under global warming by RegCM3. Atmos Oceanic Sci Lett 2:308–313

    Google Scholar 

  • Shi PJ, Sun S, Wang M, Li N, Wang JA, Jin YY, Gu XT, Yin WX (2014) Climate change regionalization in China (1961–2010). Sci China: Earth Sci 44(10):2294–2306. https://doi.org/10.1007/s11430-014-4889-1 (in Chinese)

    Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A Description of the Advanced Research WRF Version 3. NCAR Technical, Boulder, (Note, NCAR/TN-475 + STR), 113 pp

    Google Scholar 

  • Subin ZM, Riley WJ, Mironov D (2012) Improved lake model for climate simulations. J Adv Model Earth Syst 4:M02001. https://doi.org/10.1029/2011MS000072

    Google Scholar 

  • Sun Y, Solomon S, Dai A, Portmann RW (2006) How Often Does It Rain? J Climate 19:916–934

    Google Scholar 

  • Tang J, Li Q, Wang S, Lee DK, Hui P, Niu X, Gutowski WJ, Dairaku K, Mcgregor J, Katzfey J (2016) Building Asian climate change scenario by multi-regional climate models ensemble. Part I: surface air temperature. Int J Climatol 36:4241–4252

    Google Scholar 

  • Tao W-K, Simpson J, Baker D, Braun S, Chou M-D, Ferrier B, Johnson D, Khain A, Lang S, Lynn B, Shie C-L, Starr D, Sui C-H, Wang Y, Wetzel P (2003) Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor Atmos Phys, 82, 97–137

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Wea Rev 117:1779–1800

    Google Scholar 

  • Trenberth KE, Shea DJ (2005) Relationships between precipitation and surface temperature. Geophys Res Lett 32:L14703. https://doi.org/10.1029/2005GL022760

    Google Scholar 

  • Wang Y, Sen OL, Wang B (2003) A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over China. Part I: Model description and verification of simulation. J Climate 16:1721–1738

    Google Scholar 

  • Wang D, Menz C, Simon T, Simmer C, Ohlwein C (2013) Regional dynamical downscaling with CCLM over East Asia. Meteorol Atmos Phys 121(1–2):39–53

    Google Scholar 

  • Wang X, Tang J, Niu X, Wang S (2015) An assessment of precipitation and surface air temperature over China by regional climate models. Front Earth Sci. https://doi.org/10.1007/s11707-015-0548-x

    Google Scholar 

  • Wu J, Gao X-J (2013) a gridded daily observation dataset over China region and comparison with the other datasets. Chinese J Geophys 56(4):1102–1111. https://doi.org/10.6038/cjg20130406

    Google Scholar 

  • Wu J, Gao X-J, Xu Y-L, Pan J (2015) Regional climate change and uncertainty analysis based on four regional climate model simulations over China. Atmos Oceanic Sci Lett 8(3):147–152

    Google Scholar 

  • Wu F-T, Wang S-Y, Fu C-B, Qian Y, Gao Y, Lee D-K, Cha D-H, Tang J-P, Hong S-Y (2016) Evaluation and projection of summer extreme precipitation over East Asia in the Regional Model Inter-comparison Project. Clim Res 69:45–58

    Google Scholar 

  • Xu K-M, Randall DA (1996) A semiempirical cloudiness parameterization for use in climate models. J Atmos Sci 53:3084–3102

    Google Scholar 

  • Xu M, Liang X-Z, Samel A, Gao W (2014) MODIS consistent vegetation parameter specifications and their impacts on regional climate simulations. J Climate 27:8578–8596

    Google Scholar 

  • Xue Y, Janjic Z, Dudhia J, Vasic R, De Sales F (2014) A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmos Res 147–148:68–85

    Google Scholar 

  • Yang H, Wang B, Wang B (2012) Reduction of systematic biases in regional climate downscaling through ensemble forcing. Clim Dyn 38:655–665

    Google Scholar 

  • Yang H, Jiang Z, Li L (2016) Biases and improvements in three dynamical downscaling climate simulations over China. Clim Dyn. https://doi.org/10.1007/s00382-016-3023-9

    Google Scholar 

  • Yu ET, Wang HJ, Sun JQ (2010) A quick report on a dynamical downscaling simulation over China using the nested model. Atmos Oceanic Sci Lett 3:325–329

    Google Scholar 

  • Yu ET, Sun J, Chen H, Xiang W (2015) Evaluation of a high‑resolution historical simulation over China: climatology and extremes. Clim Dyn 45:2013–2031

    Google Scholar 

  • Yuan X, Liang X-Z (2011a) Evaluation of a Conjunctive Surface-Subsurface Process model (CCSP) over the contiguous United States at regional–local scales. J Hydrometeorology 12:579–599

    Google Scholar 

  • Yuan X, Liang X-Z (2011b) Improving cold season precipitation prediction by the nested CWRF-CFS system. Geophys Res Lett 38:L02706. https://doi.org/10.1029/2010GL046104

    Google Scholar 

  • Yuan X, Liang X-Z, Wood EF (2012) WRF ensemble downscaling seasonal forecasts of China winter precipitation during 1982–2008. Clim Dyn 39:2041–2058

    Google Scholar 

  • Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Climate 11:2628–2644

    Google Scholar 

  • Zeng M-J, Lu W-S, Liang X-Z, Wang X-L (2008) Ensemble forecast experiment on precipitation in summer by CWRF numeric model. Plateau Meteorology 27(6):1–11

    Google Scholar 

  • Zeng X-M, Wang M, Zhang Y, Wang Y, Zheng Y (2016) Assessing the effects of spatial resolution on regional climate model simulated summer temperature and precipitation in China: A case study. Adv Meteorol 7639567:12

    Google Scholar 

  • Zhang Y, Xu Y, Dong W, Cao L, Sparrow M (2006) A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model. Geophys Res Lett 33:L24702. https://doi.org/10.1029/2006GL027229

    Google Scholar 

  • Zhang F, Liang X-Z, Li J, Zeng Q (2013) Dominant roles of subgrid-scale cloud structures in model diversity of cloud radiative effects. J Geophys Res 118:7733–7749

    Google Scholar 

  • Zhao DM (2012) Performance of regional integrated environment modeling system (RIEMS) in the simulation of surface air temperature over East Asia. Atmos Ocean Sci Lett 5:145–150

    Google Scholar 

  • Zhao DM (2013) Performance of regional integrated environment modeling system (RIEMS) in precipitation simulations over East Asia. Clim Dyn 40(7–8):1767–1787

    Google Scholar 

  • Zhao G, Girolamo LD, Dey S, Jones AL, Bull M (2009) Examination of direct cumulus contamination on MISR-retrieved aerosol optical depth and angstrom coefficient over ocean. Geophys Res Lett 36:L13811. https://doi.org/10.1029/2009GL038549

    Google Scholar 

  • Zheng JY, Bian JJ, Ge QS, Hao ZX, Yin YH, Liao YM (2013) The climate regionalization in China for 1981–2010 (in Chinese). Chin Sci Bull 58:3088–3099. https://doi.org/10.1360/972012-1491

    Google Scholar 

  • Zhu J, Huang D-Q, Yan P-W, Huang Y, Kuang X-Y (2016) Can reanalysis datasets describe the persistent temperature and precipitation extremes over China? Theor Appl Climatol. https://doi.org/10.1007/s00704-016-1912-9

    Google Scholar 

  • Zou LW, Zhou TJ (2011) Sensitivity of a regional ocean-atmosphere coupled model to convection parameterization over western North Pacific. J Geophys Res 116:D18106. https://doi.org/10.1029/2011JD015844

    Google Scholar 

  • Zou LW, Zhou TJ (2013a) Near future (2016-40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM. Adv Atmos Sci 30(3):806–818

    Google Scholar 

  • Zou LW, Zhou TJ (2013b) Can a regional ocean–atmosphere coupled model improve the simulation of the interannual variability of the western North Pacific summer monsoon? Adv Atmos Sci 30(3):806–818

    Google Scholar 

  • Zou LW, Zhou TJ, Li L, Zhang J (2010) East China summer rainfall variability of 1958–2000: Dynamical downscaling with a variable-resolution AGCM. J Clim 23:6394–6408

    Google Scholar 

  • Zou LW, Qian Y, Zhou TJ, Yang B (2014) Parameter tuning and calibration of RegCM3 with MIT–Emanuel cumulus parameterization scheme over CORDEX East Asia domain. J Climate 27:7687–7701

    Google Scholar 

  • Zou LW, Zhou TJ, Peng D (2016) Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to standalone RCM simulations. J Geophys Res 121:1442–1458

    Google Scholar 

Download references

Acknowledgements

The RCM simulations were made using the Maryland Advanced Research Computing Center’s Bluecrab and the University of Maryland Deepthought HPC clusters for CWRF, and the Institute of Atmospheric Physics/Chinese Academy of Sciences supercomputing resources for RegCM4.6. The gridded analysis surface data as the observational reference were provided by China Meteorological Administration (CMA). Liang was partially supported by U.S. National Science Foundation Innovations at the Nexus of Food, Energy and Water Systems under Grant EAR-1639327 and CMA/National Climate Center research subcontract (2212031635601), Zheng by the Chinese Scholar Council fellowship, Dai by the National Key Research and Development Program of China (2017YFA0604303), Choi by the National Research Foundation of Korea (2017R1A2B4005232), Ling by the National Natural Science Foundation of China (NSFC) (41376016), Qiao by China Postdoctoral Science Foundation (2014M561437), Bin by NSFC (41575089), and Wang by NSFC (41275077). We thank Jennifer Kennedy for thorough editing and Qing Sun for GIS mapping.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Zhong Liang or Yongjiu Dai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 33247 KB)

Appendix A: Acronyms and Abbreviations

Appendix A: Acronyms and Abbreviations

CAR:

Cloud aerosol radiation

CCLM:

COSMO (Consortium for Small Scale Modelling) Climate local model

CLM:

Community land model

CCM:

Community climate model

CSSP:

Conjunctive surface–subsurface process model

CAM:

Community atmosphere model

CMA:

China Meteorological Administration

CSSP:

Conjunctive surface–subsurface process model

CWRF:

Climate-weather research and forecasting model

ECP:

Ensemble cumulus parameterization

ECMWF:

European Centre for Medium-Range Weather Forecasts

ERI:

ECMWF reanalysis interim

GRIMs:

Global/regional integrated model system

GSFCLXZ:

Goddard Space Flight Center Liang, Xin-zhong radiation scheme

GSFCGCE:

Goddard Space Flight Center Goddard Cumulus Ensemble

IGBP:

International geosphere-biosphere programme

IPRC:

International Pacific Research Center model

JSM:

Japan spectral model

LMDZ:

Laboratoire de météorologie dynamique-zoom model

LISSS:

Lake ice snow and sediment simulator

MISR:

Multiangle imaging spectra radiometer

MM5:

Fifth-generation mesoscale model

MODIS:

Moderate resolution imaging spectroradiometer

PRECIS:

Providing regional climates for impacts studies model

RAMS:

Regional atmospheric modeling system

RegCM:

Regional climate modeling system

RIEMS:

Regional integrated environment model system

RMIP:

Regional model intercomparison project

RSM:

Regional spectral model

SUBEX:

Subgrid explicit moisture scheme

TDK:

Tiedtke convective scheme

UOM:

Upper ocean model

USGS:

United states geological survey

UW:

University of Washington moist turbulence parameterization

WRF:

Weather research and forecasting model

XRL:

Xu-Randall-Liang cloud cover parameterization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, XZ., Sun, C., Zheng, X. et al. CWRF performance at downscaling China climate characteristics. Clim Dyn 52, 2159–2184 (2019). https://doi.org/10.1007/s00382-018-4257-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-4257-5

Keywords

Navigation