Skip to main content

Advertisement

Log in

Origin of the warm eastern tropical Atlantic SST bias in a climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The substantial warm sea surface temperature bias in the eastern Tropical Atlantic reported in most CMIP5 climate simulations with various models, in particular along the coast of Namibia and Angola, remains an issue in more recent and CMIP6-ready versions of climate models such as EC-Earth. A complete and original set of experiments with EC-Earth3.1 is performed to investigate the causes and mechanisms responsible for the emergence and persistence of this bias. The fully-developed bias is studied in a historical experiment that has reached quasi-equilibrium, while retrospective prediction experiments are used to highlight the development/growth from an observed initial state. Prediction experiments are performed at both low and high resolution to assess the possible dependence of the bias on horizontal resolution. Standalone experiments with the ocean and the atmosphere components of EC-Earth are also analyzed to separate the respective contributions of the ocean and atmosphere to the development of the bias. EC-Earth3.1 exhibits a bias similar to that reported in most climate models that took part in CMIP5. The magnitude of this bias, however, is weaker than most CMIP5 models by few degrees. Increased horizontal resolution only leads to a minor reduction of the bias in EC-Earth. The warm SST bias is found to be the result of an excessive solar absorption in the ocean mixed layer, which can be linked to the excessive solar insolation due to unrealistically low cloud cover, and the absence of spatial and temporal variability of the biological productivity in the ocean component. The warm SST bias is further linked to deficient turbulent vertical mixing of cold water to the mixed layer. Our study points at a need for better representation of clouds in the vicinity of eastern boundaries in atmosphere models, and better representation of solar penetration and turbulent mixing in the ocean models in order to eliminate the Tropical Atlantic biases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. European Centre for Medium Range Weather Forecasts.

  2. Nucleus for European Modelling of the Ocean.

  3. Generic Length Scale.

  4. Ocean Surface Mixing, Ocean Sub-mesoscale Interaction Study, https://www.bodc.ac.uk/projects/data_management/uk/osmosis/.

References

  • Axell LB (2002) Wind-driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic sea. J Geophys Res Oceans 107(C11):3204. https://doi.org/10.1029/2001JC000922

    Article  Google Scholar 

  • Balmaseda M et al (2009) Ocean initialization for seasonal forecasts. Oceanography 22(3):154–159. http://www.researchgate.net/publication/45404088_Ocean_Initialization_for_Seasonal_Forecasts/file/79e41506a3470981d1.pdf

  • Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139(674):1132–1161. https://doi.org/10.1002/qj.2063

    Article  Google Scholar 

  • Beckmann A, Döscher R (1997) A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J Phys Oceanogr 27:581–591. https://doi.org/10.1175/1520-0485(1997)027<0581:AMFIRO>2.0.CO;2

    Article  Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed-layer physics. J Phys Oceanogr 23:1363–1388. https://doi.org/10.1175/1520-0485(1993)023<1363:vottao>2.0.co;2

  • Bouillon S, Maqueda MAM, Legat V, Fichefet T (2009) Sea ice model formulated on Arakawa B and C grids. Ocean Model 27:174–184

    Article  Google Scholar 

  • Brierley CM, Collins M, Thorpe AJ (2008) The impact of perturbations to ocean-model parameters on climate and climate change in a coupled model. Clim Dyn 34(2–3):325–343. https://doi.org/10.1007/s00382-008-0486-3

    Google Scholar 

  • Brodeau L, Barnier B, Treguier A-M, Penduff T, Gulev S (2010) An era40-based atmospheric forcing for global ocean circulation models. Ocean Model 31(3):88–104

    Article  Google Scholar 

  • Caron L-P, Jones CG, Doblas-Reyes F (2014) Multi-year prediction skill of Atlantic hurricane activity in CMIP5 decadal hindcasts. Clim Dyn 42(9–10):2675–2690

    Article  Google Scholar 

  • Carslaw KS et al (2013) Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503(7474):67–71. https://doi.org/10.1038/nature12674

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136(8):2999–3017

    Article  Google Scholar 

  • Chowdary JS, Parekh A, Ojha S, Gnanaseelan C, Kakatkar R (2016) Impact of upper ocean processes and air-sea fluxes on seasonal SST biases over the tropical Indian Ocean in the NCEP Climate Forecasting System. Int J Climatol 36(1):188–207. https://doi.org/10.1002/joc.4336

    Article  Google Scholar 

  • Christian JR, Murtugudde R (2003) Tropical Atlantic variability in a coupled physical–biogeochemical ocean model. Deep Sea Res Part II 50(22):2947–2969

    Article  Google Scholar 

  • Colas F, McWilliams JC, Capet X, Kurian J (2012) Heat balance and eddies in the Peru-Chile current system. Clim Dyn 39(1–2):509–529

    Article  Google Scholar 

  • Crane TA, Roncoli C, Paz J, Breuer N, Broad K, Ingram KT, Hoogenboom G (2010) Forecast skill and farmers’ skills: seasonal climate forecasts and agricultural risk management in the Southeastern US. Weather Clim Soc 2(1):44–59. https://doi.org/10.1175/2009WCAS1006.1

    Article  Google Scholar 

  • D’Asaro EA (1985) The energy flux from the wind to near-inertial motions in the surface mixed layer. J Phys Oceanogr 15(8):1043–1059

    Article  Google Scholar 

  • De Felice M, Alessandri A, Catalano F (2015) Seasonal climate forecasts for medium-term electricity demand forecasting. Appl Energy 137:435–444. https://doi.org/10.1016/j.apenergy.2014.10.030

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656): 553–597. http://centaur.reading.ac.uk/24937/

  • Deser C, Alexander MA, Timlin MS (2003) Understanding the persistence of sea surface temperature anomalies in midlatitudes. J Clim 16(1):57–72

    Article  Google Scholar 

  • Doblas-Reyes F, Hagedorn R, Palmer T (2006) Developments in dynamical seasonal forecasting relevant to agricultural management. Clim Res 33(1):19

    Article  Google Scholar 

  • Doblas-Reyes FJ, García-Serrano J, Lienert F, Biescas AP, Rodrigues LRL (2013a) Seasonal climate predictability and forecasting: status and prospects. Wiley Interdiscip Rev Clim Change 4(4):245–268. https://doi.org/10.1002/wcc.217

    Article  Google Scholar 

  • Doblas-Reyes FJ et al (2013b) Initialized near-term regional climate change prediction. Nat Commun 4:1715. https://doi.org/10.1038/ncomms2704. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3644073&tool=pmcentrez&rendertype=abstract

  • Du H, Doblas-Reyes FJ, García-Serrano J, Guemas V, Soufflet Y, Wouters B (2012) Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations. Clim Dyn 39(7):2013–2023. https://doi.org/10.1007/s00382-011-1285-9

    Article  Google Scholar 

  • Emanuel K, Fondriest F, Kossin J (2012) Potential economic value of seasonal hurricane forecasts. Weather Clim Soc 4(2):110–117

    Article  Google Scholar 

  • Ferry N, Parent L, Garric G, Barnier B, Jourdain NC (2010) Mercator global eddy permitting ocean reanalysis GLORYS1V1: description and results. Mercator Ocean Q Newsl 36:15–27

    Google Scholar 

  • Fichefet T, Maqueda M (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res Oceans (1978–2012) 102(C6):12 609–12 646

    Article  Google Scholar 

  • Forbes RM, Tompkins AM, Untch A (2011) A new prognastic bulk microphysics scheme for the IFS. European Centre for Medium-Range Weather Forecasts

  • Garcia-Morales MB, Dubus L (2007) Forecasting precipitation for hydroelectric power management: how to exploit GCM’s seasonal ensemble forecasts. Int J Climatol 27(12):1691. https://doi.org/10.1002/joc.1608

    Article  Google Scholar 

  • García-Serrano J, Doblas-Reyes F, Haarsma R, Polo I (2013) Decadal prediction of the dominant west African monsoon rainfall modes. J Geophys Res Atmos 118(11):5260–5279

    Article  Google Scholar 

  • Garrett C (2001) What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J Phys Oceanogr 31(4):962–971

    Article  Google Scholar 

  • Gaspar P, Grégoris Y, Lefevre J-M (1990) A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: tests at station papa and long-term upper ocean study site. J Geophys Res Oceans 95(C9):16 179–16 193

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155. https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2

    Article  Google Scholar 

  • Giordani H, Caniaux G, Voldoire A (2013) Intraseasonal mixed-layer heat budget in the equatorial Atlantic during the cold tongue development in 2006. J Geophys Res Oceans 118(2):650–671

    Article  Google Scholar 

  • Grodsky SA, Carton JA, Nigam S, Okumura YM (2012) Tropical Atlantic biases in CCSM4. J Clim 25(11):3684–3701

    Article  Google Scholar 

  • Haman KE, Malinowski SP, Kurowski MJ, Gerber H, Brenguier J-L (2007) Small scale mixing processes at the top of a marine stratocumulus—a case study. Q J R Meteorol Soc 133(622):213–226

    Article  Google Scholar 

  • Hastenrath S, Lamb P (1978) On the dynamics and climatology of surface flow over the equatorial oceans. Tellus 30(5):436–448

    Article  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1107. https://doi.org/10.1175/2009BAMS2607.1

    Article  Google Scholar 

  • Hazeleger W, Haarsma RJ (2005) Sensitivity of tropical Atlantic climate to mixing in a coupled ocean–atmosphere model. Clim Dyn 25(4):387–399

    Article  Google Scholar 

  • Hazeleger W et al (2012) EC-earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39(11):2611–2629

    Article  Google Scholar 

  • Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846

    Article  Google Scholar 

  • Hieronymus M, Nycander J (2013) The budgets of heat and salinity in NEMO. Ocean Modell 67:28–38. https://doi.org/10.1016/j.ocemod.2013.03.006. http://linkinghub.elsevier.com/retrieve/pii/S1463500313000462

  • Hourdin F et al (2013) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim Dyn 40(9–10):2167–2192

    Article  Google Scholar 

  • Huang B, Hu Z-Z, Jha B (2007) Evolution of model systematic errors in the tropical Atlantic basin from coupled climate hindcasts. Clim Dyn 28(7–8):661–682

    Article  Google Scholar 

  • Huang B, Stone PH, Sokolov AP, Kamenkovich IV (2003) Ocean heat uptake in transient climate change: mechanisms and uncertainty due to subgrid-scale eddy mixing. J Clim 16(20):3344–3356

    Article  Google Scholar 

  • Jarre A et al (2015) Synthesis: climate effects on biodiversity, abundance and distribution of marine organisms in the Benguela. Fish Oceanogr 24(S1):122–149. https://doi.org/10.1111/fog.12086

    Article  Google Scholar 

  • Jewson S et al (2008) Five year prediction of the number of hurricanes which make United States landfall. Hurric Clim Change:73–99. https://doi.org/10.1007/978-0-387-09410-6_5

  • Jouanno J, Marin F, Du Penhoat Y, Sheinbaum J, Molines J-M (2011) Seasonal heat balance in the upper 100 m of the equatorial Atlantic ocean. J Geophys Res Oceans 116:C09003. https://doi.org/10.1029/2010JC006912

    Article  Google Scholar 

  • Jung T et al (2012) High-resolution global climate simulations with the ECMWF model in project athena: experimental design, model climate, and seasonal forecast skill. J Clim 25(9):3155–3172. https://doi.org/10.1175/JCLI-D-11-00265.1

    Article  Google Scholar 

  • Keenlyside NS, Ding H, Latif M (2013) Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys Res Lett 40(10):2278–2283. https://doi.org/10.1002/grl.50362

    Article  Google Scholar 

  • Knutti R, Meehl GA, Allen MR, Stainforth DA (2006) Constraining climate sensitivity from the seasonal cycle in surface temperature. J Clim 19(17):4224–4233

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett 35(4):1–5. https://doi.org/10.1029/2007GL033037

    Article  Google Scholar 

  • Kumar BP, Vialard J, Lengaigne M, Murty V, McPhaden M (2012) Tropflux: air-sea fluxes for the global tropical oceans—description and evaluation. Clim Dyn 38(7–8):1521–1543

    Article  Google Scholar 

  • Large W, Danabasoglu G (2006) Attribution and impacts of upper-ocean biases in CCSM3. J Clim 19(11):2325–2346

    Article  Google Scholar 

  • Lass H, Schmidt M, Mohrholz V, Nausch G (2000) Hydrographic and current measurements in the area of the Angola–Benguela front. J Phys Oceanogr 30(10):2589–2609

    Article  Google Scholar 

  • Ledwell J, Montgomery E, Polzin K, St. Laurent LC, R. Schmitt, Toole J (2000) Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403(6766):179–82. https://doi.org/10.1038/35003164. http://www.ncbi.nlm.nih.gov/pubmed/10646599

  • Lengaigne M, Menkes C, Aumont O, Gorgues T, Bopp L, André J-M, Madec G (2007) Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model. Clim Dyn 28(5):503–516

    Article  Google Scholar 

  • Lenschow DH, Zhou M, Zeng X, Chen L, Xu X (2000) Measurements of fine-scale structure at the top of marine stratocumulus. Bound Layer Meteorol 97(2):331–357

    Article  Google Scholar 

  • Lindborg E, Brethouwer G (2008) Vertical dispersion by stratified turbulence. J Fluid Mech 614:303–314

    Article  Google Scholar 

  • Ma H-Y et al (2014) On the correspondence between mean forecast errors and climate errors in CMIP5 models. J Clim 27(4):1781–1798

    Article  Google Scholar 

  • Maclachlan C et al (2014) Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q J R Meteorol Soc. https://doi.org/10.1002/qj.2396

    Google Scholar 

  • Madec G (2008) Nemo ocean engine, Note du Pole de modelisation, Vol 27. Institut Pierre-Simon Laplace (IPSL), France, pp 1288–1619

    Google Scholar 

  • Manabe S, Stouffer RJ (1996) Low-frequency variability of surface air temperature in a 1000-year integration of a coupled atmosphere–ocean–land surface model. J Clim 9(2):376–393

    Article  Google Scholar 

  • Mellor G, Blumberg A (2004) Wave breaking and ocean surface layer thermal response. J Phys Oceanogr 34(3):693–698

    Article  Google Scholar 

  • Merchant CJ et al (2014) Sea surface temperature datasets for climate applications from phase 1 of the European space agency climate change initiative (SST CCI). Geosci Data J 1(2):179–191

    Article  Google Scholar 

  • Monger B, McClain C, Murtugudde R (1997) Seasonal phytoplankton dynamics in the eastern tropical Atlantic. J Geophys Res Oceans 102(C6):12 389–12 411

    Article  Google Scholar 

  • Morcrette J, Barker H, Cole J, Iacono M, Pincus R (2008) Impact of a new radiation package, MCRAD, in the ECMWF integrated forecasting system. Mon Weather Rev 136(12):4773–4798

    Article  Google Scholar 

  • Morel A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content (case i waters). J Geophys Res 93(10):749–810

    Google Scholar 

  • Moum JN, Caldwell DR, Paulson CA (1989) Mixing in the equatorial surface layer and thermocline. J Geophys Res Oceans 94(C2):2005–2022

    Article  Google Scholar 

  • Murtugudde R, Beauchamp J, McClain CR, Lewis M, Busalacchi AJ (2002) Effects of penetrative radiation on the upper tropical ocean circulation. J Clim 15(5):470–486

    Article  Google Scholar 

  • Nash JD, Kunze E, Toole JM, Schmitt RW (2004) Internal tide reflection and turbulent mixing on the continental slope. J Phys Oceanogr 34(5):1117–1134

    Article  Google Scholar 

  • Patricola CM, Li M, Xu Z, Chang P, Saravanan R, Hsieh J-S (2012) An investigation of tropical Atlantic bias in a high-resolution coupled regional climate model. Clim Dyn 39(9–10):2443–2463

    Article  Google Scholar 

  • Peterson RG, Stramma L (1991) Upper-level circulation in the south Atlantic ocean. Prog Oceanogr 26(1):1–73

    Article  Google Scholar 

  • Planton Y (2015) Sources de la variabilité interannuelle de la langue d’eau froide Atlantique. Ph.D. thesis, Université Toulouse III Paul Sabatier

  • Polzin KL, Firing E (1997) Estimates of diapycnal mixing using LADCP and CTD data from I8S. Int WOCE Newsl 29:39–42

    Google Scholar 

  • Prodhomme C, Doblas-Reyes F, Bellprat O, Dutra E (2015) Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Clim Dyn. https://doi.org/10.1007/s00382-015-2879-4

    Google Scholar 

  • Qu X, Hall A, Klein SA, Caldwell PM (2014) On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Clim Dyn 42(9–10):2603–2626

    Article  Google Scholar 

  • Rayner NA (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Richter I (2015) Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. Wiley Interdiscip Rev Clim Change 6(3):345–358. https://doi.org/10.1002/wcc.338

    Article  Google Scholar 

  • Richter I, Xie SP (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31(5):587–598. https://doi.org/10.1007/s00382-008-0364-z

    Article  Google Scholar 

  • Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of quikscat scatterometer data. J Phys Oceanogr 38(11):2379–2413

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36(20):L20–L705. https://doi.org/10.1029/2009GL040048

    Article  Google Scholar 

  • Roehrig R, Bouniol D, Guichard F, Hourdin FD, Redelsperger J-LL (2013) The present and future of the West African monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA transect. J Clim 26:6471–6505. https://doi.org/10.1175/JCLI-D-12-00505.1. http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00505.1

  • Rossow WB, Commission IO et al (1996) International Satellite Cloud Climatology Project (ISCCP): documentation of new cloud datasets. NASA Goddard Space Flight Center

  • Sakamoto TT et al (2012) MIROC4h—a new high-resolution atmosphere–ocean coupled general circulation model. J Meteorol Soc Jpn 90(3):325–359. https://doi.org/10.2151/jmsj.2012-301

    Article  Google Scholar 

  • Saravanan R, Chang P (2000) Interaction between tropical Atlantic variability and el nino-southern oscillation. J Clim 13(13):2177–2194

    Article  Google Scholar 

  • Semtner AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Ocean 6:379–389

    Article  Google Scholar 

  • Sherwood SC, Bony S, Dufresne J-L (2014) Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505(7481):37–42

    Article  Google Scholar 

  • Small RJ, Curchitser E, Hedstrom K, Kauffman B, Large WG (2015) The benguela upwelling system: quantifying the sensitivity to resolution and coastal wind representation in a global climate model*. J Clim 28(23):9409–9432

    Article  Google Scholar 

  • Song Z, Lee S-K, Wang C, Kirtman BP, Qiao F (2015) Contributions of the atmosphere–land and ocean–sea ice model components to the tropical Atlantic SST bias in CESM1. Ocean Model 96:280–290

    Article  Google Scholar 

  • Soret A, Gonzalez N, Torralba V, Cortesi N, Turco M, Doublas-Reyes FJ (2016) Climate predictions for vineyard management (April 10–13, 2016, burdeaux, france)

  • Stainforth DA, et al (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433(7024):403–6. https://doi.org/10.1038/nature03301. http://www.ncbi.nlm.nih.gov/pubmed/15674288

  • Sterl A et al (2012) A look at the ocean in the EC-Earth climate model. Clim Dyn 39:2631–2657. https://doi.org/10.1007/s00382-011-1239-2

    Article  Google Scholar 

  • Stevens B et al (2005) Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon Weather Rev 133(6):1443–1462

    Article  Google Scholar 

  • Sultan B, Baron C, Dingkuhn M, Sarr B, Janicot S (2005) Agricultural impacts of large-scale variability of the West African monsoon. Agric For Meteorol 128(1–2):93–110. https://doi.org/10.1016/j.agrformet.2004.08.005

    Article  Google Scholar 

  • Terray P, Masson S, Prodhomme C, Roxy MK, Sooraj KP (2015) Impacts of Indian and Atlantic oceans on ENSO in a comprehensive modeling framework. Clim Dyn. https://doi.org/10.1007/s00382-015-2715-x

  • Tompkins AM, di Giuseppe F (2015) Potential predictability of malaria in Africa using ECMWF monthly and seasonal climate forecasts. J Appl Meteorol Climatol 54(3):521–540. https://doi.org/10.1175/JAMC-D-14-0156.1

    Article  Google Scholar 

  • Toniazzo T, Woolnough S (2013) Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts. Clim Dyn. https://doi.org/10.1007/s00382-013-1691-2

    Google Scholar 

  • Toole JM, Schmitt RW, Polzin KL (1994) Estimates of diapycnal mixing in the abyssal ocean. Science (New York, N.Y.) 264(5162):1120–3. https://doi.org/10.1126/science.264.5162.1120. http://www.ncbi.nlm.nih.gov/pubmed/17744895

  • Umlauf L, Burchard H (2003) A generic length-scale equation for geophysical turbulence models. J Mar Res 61(2):235–265. https://doi.org/10.1357/002224003322005087

    Article  Google Scholar 

  • Valcke S (2006) Oasis3 user guide (prism_2-5). PRISM support initiative report 3, p 64

  • Vannière B, Guilyardi E, Madec G, Doblas-Reyes FJ, Woolnough S (2013) Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Clim Dyn 40(3–4):963–981. https://doi.org/10.1007/s00382-012-1429-6

    Article  Google Scholar 

  • Vannière B, Guilyardi E, Toniazzo T, Madec G, Woolnough S (2014) A systematic approach to identify the sources of tropical SST errors in coupled models using the adjustment of initialised experiments. Clim Dyn 43(7–8):2261–2282. https://doi.org/10.1007/s00382-014-2051-6

    Article  Google Scholar 

  • Voldoire A, Claudon M, Caniaux G, Giordani H, Roehrig R (2014) Are atmospheric biases responsible for the tropical Atlantic SST biases in the CNRM-CM5 coupled model? Clim Dyn 43(11):2963–2984. https://doi.org/10.1007/s00382-013-2036-x

    Article  Google Scholar 

  • Wahl S, Latif M, Park W, Keenlyside N (2011) On the tropical Atlantic SST warm bias in the kiel climate model. Clim Dyn 36(5–6):891–906

    Article  Google Scholar 

  • Waliser DE, Gautier C (1993) A satellite-derived climatology of the ITCZ. J Clim 6(11):2162–2174

    Article  Google Scholar 

  • Wang C, Zhang L, Lee S-K, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4(3):201–205

    Article  Google Scholar 

  • Weingartner TJ, Weisberg RH (1991) On the annual cycle of equatorial upwelling in the central Atlantic ocean. J Phys Oceanogr 21(1):68–82

    Article  Google Scholar 

  • Wyant M, Bretherton C, Bacmeister J, Kiehl J, Held I, Zhao M, Klein S, Soden B (2006) A comparison of tropical cloud properties and responses in gcms using mid-tropospheric vertical velocity. Climate Dyn 27:261–279

    Article  Google Scholar 

  • Xie S-P, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts. Earth’s Clim:121–142

  • Xu Z, Chang P, Richter I, Tang G (2014a) Diagnosing southeast tropical Atlantic SST and ocean circulation biases in the CMIP5 ensemble. Clim Dyn 43(11):3123–3145

    Article  Google Scholar 

  • Xu Z, Li M, Patricola CM, Chang P (2014b) Oceanic origin of southeast tropical Atlantic biases. Clim Dyn 43(11):2915–2930

    Article  Google Scholar 

  • Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Tech. Rep. OA-2008-01. 74

  • Zhang M et al (2005) Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J Geophys Res Atmos 110:D15S02

    Google Scholar 

  • Zhang S (2011) A study of impacts of coupled model initial shocks and state-parameter optimization on climate predictions using a simple pycnocline prediction model. J Clim 24(23):6210–6226

    Article  Google Scholar 

  • Zheng Y, Shinoda T, Lin J-L, Kiladis GN (2011) Sea surface temperature biases under the stratus cloud deck in the southeast pacific ocean in 19 iPCC AR4 coupled general circulation models. J Clim 24(15):4139–4164

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the anonymous reviewer who provided constructive comments that led to a considerable improvement of the manuscript. We would also like to thank Aurore Voldoire and Anna-Lena Deppenmeier for the useful discussion, and Yann Planton for providing the code for implementing the tendency diagnostics in NEMO. This research has received funding from the EU Seventh Framework Programme FP7 (2007–2013) under grant agreements 308378 (SPECS), 603521 (PREFACE) and the Horizon 2020 EU program under grand agreements 641727 (PRIMAVERA). We acknowledge RES and ECMWF for awarding access to supercomputing facilities in the Barcelona Supercomputing Center in Spain and the ECMWF Supercomputing Center in the UK, through the HiResClim and SPESICCF projects, recpectively. We acknowledge the work of the developers of the s2dverification R-based package (http://cran.r-project.org/web/packages/s2dverification/index.html). The visualization of some of the figures was done with the NCAR Command Language (NCL, Version 6.3.0, 2016, Boulder, Colorado: UCAR/NCAR/CISL/TDD, http://dx.doi.org/10.5065/D6WD3XH5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Exarchou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

382_2017_3984_MOESM1_ESM.pdf

Figure S1: Forecast biases in the four components of the area-averaged surface heat fluxes over the CAB region (positive is downwards, units are W/m2) for the LR-Hind experiment with respect to TropFlux. Sensible heat fluxes are shown in green, latent in blue, longwave in brown, shortwave in red, and net heat fluxes in black, for the the summer months (May-August) in the top row and winter months (November-February) in the bottom row. The grey line is the SST bias (with respect to ERAi), and its values are shown in the right Y axis, in °C. The biases are calculated as the difference between LR-Hind and the reference dataset (TropFlux or ERAi) in their time mean data over 17 years (1993-2009) for each day in May (left) and November (right) (PDF 69 KB)

382_2017_3984_MOESM2_ESM.pdf

Figure S2: Climatological meridional surface wind speed vas (in m/s, time averages between 1999-2009), and zonally averaged between 25°S-5°S, for DFS4.3 and QuikSCAT (PDF 84 KB)

382_2017_3984_MOESM3_ESM.pdf

Figure S3: Forecast biases in the four components of the meridionally averaged (between 18°S-5°S) surface heat fluxes (positive is downwards, units are W/m2) for the LR-Hind experiment with respect to OAFlux (as in Fig 15) (PDF 68 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Exarchou, E., Prodhomme, C., Brodeau, L. et al. Origin of the warm eastern tropical Atlantic SST bias in a climate model. Clim Dyn 51, 1819–1840 (2018). https://doi.org/10.1007/s00382-017-3984-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3984-3

Keywords

Navigation