Skip to main content
Log in

Role of circulation in European heatwaves using flow analogues

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The intensity of European heatwaves is connected to specific synoptic atmospheric circulation. Given the relatively small number of observations, estimates of the connection between the circulation and temperature require ad hoc statistical methods. This can be achieved through the use of analogue methods, which allow to determine a distribution of temperature conditioned to the circulation. The computation of analogues depends on a few parameters. In this article, we evaluate the influence of the variable representing the circulation, the size of the domain of computation, the length of the dataset, and the number of analogues on the reconstituted temperature anomalies. We tested the sensitivity of the reconstitution of temperature to these parameters for four emblematic recent heatwaves: June 2003, August 2003, July 2006 and July 2015. The paper provides general guidelines for the use of flow analogues to investigate European summer heatwaves. We found that Z500 is better suited than SLP to simulate temperature anomalies, and that rather small domains lead to better reconstitutions. The dataset length has an important influence on the uncertainty. We conclude by a set of recommendations for an optimal use of analogues to probe European heatwaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Beck C, Philipp A, Jacobeit J (2015) Interannual drought index variations in Central Europe related to the large-scale atmospheric circulation—application and evaluation of statistical downscaling approaches based on circulation type classifications. Theor Appl Climatol 121(3):713–732. doi:10.1007/s00704-014-1267-z

    Article  Google Scholar 

  • Ben Daoud A, Sauquet E, Bontron G, Obled C, Lang M (2016) Daily quantitative precipitation forecasts based on the analogue method: Improvements and application to a French large river basin. Atmos Res 169:147–159. doi:10.1016/j.atmosres.2015.09.015

    Article  Google Scholar 

  • Beniston M, Diaz HF (2004) The 2003 heat wave as an example of summers in a greenhouse climate? Observations and climate model simulations for Basel, Switzerland. Glob Planet Change 44(1–4):73–81. doi:10.1016/j.gloplacha.2004.06.006

    Article  Google Scholar 

  • Cassou C, Cattiaux J (2016) Disruption of the European climate seasonal clock in a warming world. Nat Clim Change 6:589–594. doi:10.1038/nclimate2969

    Article  Google Scholar 

  • Cassou C, Terray L, Phillips AS (2005) Tropical Atlantic influence on European heat waves. J Clim 18(15):2805–2811. doi:10.1175/JCLI3506.1

    Article  Google Scholar 

  • Cattiaux J, Vautard R, Cassou C, Yiou P, Masson-Delmotte V, Codron F (2010) Winter 2010 in Europe: a cold extreme in a warming climate. Geophys Res Lett 37(20):1–6. doi:10.1029/2010GL044613

    Article  Google Scholar 

  • Chardon J, Hingray B, Favre AC, Autin P, Gailhard J, Zin I, Obled C (2014) Spatial similarity and transferability of analog dates for precipitation downscaling over France. J Clim 27(13):5056–5074. doi:10.1175/JCLI-D-13-00464.1

    Article  Google Scholar 

  • Chardon J, Favre AC, Hingray B (2016) Effects of spatial aggregation on the accuracy of statistically downscaled precipitation predictions. J Hydrometeorol 17(5):1561–1578. doi:10.1175/JHM-D-15-0031.1

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533. doi:10.1038/nature03972

    Article  Google Scholar 

  • Committee on Extreme Weather Events and Climate Change Attribution (2016) Attribution of extreme weather events in the context of climate change. doi:10.17226/21852.

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk M, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli O, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  • Della-Marta PM, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H (2007) Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn 29(2–3):251–275. doi:10.1007/s00382-007-0233-1

    Article  Google Scholar 

  • Djalalova I, Delle Monache L, Wilczak J (2015) PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmos Environ 108:76–87. doi:10.1016/j.atmosenv.2015.02.021

    Article  Google Scholar 

  • Dole R, Hoerling M, Perlwitz J, Eischeid J, Pegion P, Zhang T, Quan XW, Xu T, Murray D (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett 38(6):1–5. doi:10.1029/2010GL046582

    Article  Google Scholar 

  • Van den Dool H (1994) Searching for analogues, how long must we wait? Tellus A 46(3):314–324

    Article  Google Scholar 

  • Duband D (1981) Prévision spatiale des hauteurs de précipitations journalières (A spatial forecast of daily precipitation heights). La Houille Blanche 7–8:497–512. doi:10.1051/lhb/1981046

    Article  Google Scholar 

  • Dunne JP, John JG, Shevliakova S, Stouffer RJ, Krasting JP, Malyshev SL, Milly PCD, Sentman LT, Adcroft AJ, Cooke W, Dunne KA, Griffies SM, Hallberg RW, Harrison MJ, Levy H, Wittenberg AT, Phillips PJ, Zadeh N (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665. doi:10.1175/JCLI-D-11-00560.1

    Article  Google Scholar 

  • Dunne JP, John JG, Shevliakova S, Stouffer RJ, Krasting JP, Malyshev SL, Milly PCD, Sentman LT, Adcroft AJ, Cooke W, Dunne KA, Griffies SM, Hallberg RW, Harrison MJ, Levy H, Wittenberg AT, Phillips PJ, Zadeh N (2013) GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics. J Clim 26(7):2247–2267. doi:10.1175/JCLI-D-12-00150.1

    Article  Google Scholar 

  • Feudale L, Shukla J (2007) Role of Mediterranean SST in enhancing the European heat wave of summer 2003. Geophys Res Lett 34(3):L03811. doi:10.1029/2006GL027991

    Article  Google Scholar 

  • Field CB, Intergovernmental Panel on Climate Change (2012) Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the Intergovernmental Panel on Climate Change. doi:10.1017/CBO9781139177245

  • Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture-atmosphere interactions during the 2003 European summer heat wave. J Clim 20(20):5081–5099. doi:10.1175/JCLI4288.1

    Article  Google Scholar 

  • Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, Clavel J, Jougla E, Hémon D (2006) Excess mortality related to the August 2003 heat wave in France. Int Arch Occup Environ Health 80(1):16–24. doi:10.1007/s00420-006-0089-4

    Article  Google Scholar 

  • Gómez-Navarro JJ, Werner J, Wagner S, Luterbacher J, Zorita E (2014) Establishing the skill of climate field reconstruction techniques for precipitation with pseudoproxy experiments. Clim Dyn 45(5–6):1395–1413. doi:10.1007/s00382-014-2388-x

    Google Scholar 

  • Green PJ, Silverman BW (1994) Nonparametric regression and generalized linear models : a roughness penalty approach, 1st edn. In: Green PJ, Silverman BW. Monographs on statistics and applied probability, vol 58, Chapman & Hall, London

  • Hamill TM, Whitaker JS (2006) Probabilistic quantitative precipitation forecasts based on reforecast analogs: theory and application. Mon Weather Rev 134(11):3209–3229. doi:10.1175/MWR3237.1

    Article  Google Scholar 

  • Hamill TM, Scheuerer M, Bates GT (2015) Analog probabilistic precipitation forecasts using GEFS reforecasts and climatology-calibrated precipitation analyses. Mon Weather Rev 143(8):3300–3309. doi:10.1175/MWR-D-15-0004.1

    Article  Google Scholar 

  • Horton DE, Johnson NC, Singh D, Swain DL, Rajaratnam B, Diffenbaugh NS (2015) Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 522(7557):465–469. doi:10.1038/nature14550

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, arXiv:1011.1669v3

  • Lorenz EN (1969) Atmospheric predictability as revealed by naturally occurring analogues. J Atmos Sci 26(4):636–646. doi:10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2

  • Michelangeli PA, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationarity. doi:10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2

  • Peng RD, Bobb JF, Tebaldi C, McDaniel L, Bell ML, Dominici F (2011) Toward a quantitative estimate of future heat wave mortality under global climate change. Environ Health Perspect. doi:10.1289/ehp.1002430

  • Poli P, Hersbach H, Dee DP, Berrisford P, Simmons AJ, Vitart F, Laloyaux P, Tan DGH, Peubey C, Thépaut JN, Trémolet Y, Hólm EV, Bonavita M, Isaksen L, Fisher M (2016) ERA-20C: an atmospheric reanalysis of the twentieth century. J Clim 29(11):4083–4097. doi:10.1175/JCLI-D-15-0556.1

    Article  Google Scholar 

  • Portela A, Castro M (1996) Summer thermal lows in the Iberian peninsula: a three-dimensional simulation. Q J Roy Meteorol Soc 122(1):1–22. doi:10.1002/qj.49712252902

    Article  Google Scholar 

  • Quesada B, Vautard R, Yiou P, Hirschi M, Seneviratne SI (2012) Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat Clim Change 2(10):736–741. doi:10.1038/nclimate1536

    Article  Google Scholar 

  • Radanovics S, Vidal JP, Sauquet E, Ben Daoud A, Bontron G (2013) Optimising predictor domains for spatially coherent precipitation downscaling. Hydrol Earth Sys Sc 17(10):4189–4208. doi:10.5194/hess-17-4189-2013

    Article  Google Scholar 

  • Rebetez M, Dupont O, Giroud M (2009) An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003. Theor Appl Climatol 95(1–2):1–7. doi:10.1007/s00704-007-0370-9

    Article  Google Scholar 

  • Russo S, Sillmann J, Fischer EM (2015) Top ten European heatwaves since 1950 and their occurrence in the future. Environ Res Lett 10(12):124003. doi:10.1088/1748-9326/10/12/124003

    Article  Google Scholar 

  • Schenk F, Zorita E (2012) Reconstruction of high resolution atmospheric fields for Northern Europe using analog-upscaling. Clim Past 8(5):1681–1703. doi:10.5194/cp-8-1681-2012

    Article  Google Scholar 

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443(7108):205–209. doi:10.1038/nature05095

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161. doi:10.1016/j.earscirev.2010.02.004

    Article  Google Scholar 

  • Shepherd TG (2015) Climate science: the dynamics of temperature extremes. Nature 522(7557):425–427. doi:10.1038/522425a

    Article  Google Scholar 

  • Shepherd TG (2016) A common framework for approaches to extreme event attribution. Curr Clim Change Rep 2:28–38. doi:10.1007/s40641-016-0033-y

    Article  Google Scholar 

  • Stéfanon M, Drobinski P, D’Andrea F, De Noblet-Ducoudré N (2012) Effects of interactive vegetation phenology on the 2003 summer heat waves. J Geophys Res Atmos 117(24):1–15. doi:10.1029/2012JD018187

    Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309(5731):115–118. doi:10.1126/science.1109496

    Article  Google Scholar 

  • Tandeo P, Ailliot P, Ruiz J, Hannart A, Chapron B, Easton R, Fablet R (2015) Combining analog method and ensemble data assimilation: application to the Lorenz-63 chaotic system. Mach Learn Data Min Approach Clim Sci 3–12. doi:10.1007/978-3-319-17220-0_1

  • Taylor KE, Stouffer RJ, Meehl Ga (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Toth Z (1991) Estimation of atmospheric predictability by circulation analogs. Mon Weather Rev 119(1):65–72

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Shepherd TG (2015) Attribution of climate extreme events. Nat Clim Change 5(August):725–730. doi:10.1038/nclimate2657

  • Turco M, Quintana Seguí P, Llasat MC, Herrera S, Gutiérrez JM (2011) Testing MOS precipitation downscaling for ENSEMBLES regional climate models over Spain. J Geophys Res 116(D18):109. doi:10.1029/2011JD016166

    Article  Google Scholar 

  • Vanvyve E, Monache LD, Monaghan AJ, Pinto JO (2015) Wind resource estimates with an analog ensemble approach. Renew Energy 74:761–773. doi:10.1016/j.renene.2014.08.060

    Article  Google Scholar 

  • Vautard R (1990) Multiple weather regimes over the North Atlantic: analysis of precursors and successors. Mon Weather Rev 118. doi:10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2

  • Yiou P (2014) AnaWEGE: a weather generator based on analogues of atmospheric circulation. Geosci Model Dev 7:531–543. doi:10.5194/gmd-7-531-2014

    Article  Google Scholar 

  • Yiou P, Nogaj M (2004) Extreme climatic events and weather regimes over the North Atlantic: when and where? Geophys Res Lett 31:1–4. doi:10.1029/2003GL019119

    Article  Google Scholar 

  • Yiou P, Salameh T, Drobinski P, Menut L, Vautard R, Vrac M (2012) Ensemble reconstruction of the atmospheric column from surface pressure using analogues. Clim Dyn 41(5–6):1333–1344. doi:10.1007/s00382-012-1626-3

    Google Scholar 

  • Yiou P, Boichu M, Vautard R, Vrac M, Jourdain S, Garnier E, Fluteau F, Menut L (2014) Ensemble meteorological reconstruction using circulation analogues of 1781–1785. Clim Past 10(2):797–809. doi:10.5194/cp-10-797-2014

    Article  Google Scholar 

  • Zorita E, von Storch H (1999) The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12(8):2474–2489. doi:10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2

Download references

Acknowledgements

NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. Program to compute analogues available online https://a2c2.lsce.ipsl.fr/index.php/licences/file/castf90?id=3. PY and SR are supported by the ERC Grant A2C2 (No. 338965).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aglaé Jézéquel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jézéquel, A., Yiou, P. & Radanovics, S. Role of circulation in European heatwaves using flow analogues. Clim Dyn 50, 1145–1159 (2018). https://doi.org/10.1007/s00382-017-3667-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3667-0

Keywords

Navigation