Skip to main content

Advertisement

Log in

Assessing regional climate simulations of the last 30 years (1982–2012) over Ganges–Brahmaputra–Meghna River Basin

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Ganges–Brahmaputra–Meghna (GBM) River Basin presents a spatially diverse hydrological regime due to it’s complex topography and escalating demand for freshwater resources. This presents a big challenge in applying the current state-of-the-art regional climate models (RCMs) for climate change impact studies in the GBM River Basin. In this study, several RCM simulations generated by RegCM4.4 and PRECIS are assessed for their seasonal and interannual variations, onset/withdrawal of the Indian monsoon, and long-term trends in precipitation and temperature from 1982 to 2012. The results indicate that in general, RegCM4.4 and PRECIS simulations appear to reasonably reproduce the mean seasonal distribution of precipitation and temperature across the GBM River Basin, although the two RCMs are integrated over a different domain size. On average, the RegCM4.4 simulations overestimate monsoon precipitation by \({\sim }26\) and \({\sim }5\%\) in the Ganges and Brahmaputra–Meghna River Basin, respectively, while PRECIS simulations underestimate (overestimate) the same by \({\sim }7\%\) (\({\sim }16\%\)). Both RegCM4.4 and PRECIS simulations indicate an intense cold bias (up to \(10\,^\circ \hbox {C}\)) in the Himalayas, and are generally stronger in the RegCM4.4 simulations. Additionally, they tend to produce high precipitation between April and May in the Ganges (RegCM4.4 simulations) and Brahmaputra–Meghna (PRECIS simulations) River Basins, resulting in early onset of the Indian monsoon in the Ganges River Basin. PRECIS simulations exhibit a delayed monsoon withdrawal in the Brahmaputra–Meghna River Basin. Despite large spatial variations in onset and withdrawal periods across the GBM River Basin, the basin-averaged results agree reasonably well with the observed periods. Although global climate model (GCM) driven simulations are generally poor in representing the interannual variability of precipitation and winter temperature variations, they tend to agree well with observed precipitation anomalies when driven by perfect boundary conditions. It is also seen that all GCM driven simulations feature significant positive surface temperature trends consistent with the observed datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ashok K, Saji NH (2007) On the impacts of ENSO and Indian Ocean dipole events on sub-regional Indian summer monsoon rainfall. Nat Hazards 42(2):273–285. doi:10.1007/s11069-006-9091-0

    Article  Google Scholar 

  • Becker A, Finger P, Meyer-Christoffe A, Rudolf B, Schamm K, Schneider U, Ziese M (2013) A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901present. Earth Syst Sci Data 5:71–99. doi:10.5194/essd-5-71-2013

    Article  Google Scholar 

  • Bhaskaran B, Jones RG, Murphy JM, Noguer M (1996) Simulations of the Indian summer monsoon using a nested regional climate model: domain size experiments. Clim Dyn 12(9):573–587. doi:10.1007/BF00216267

    Article  Google Scholar 

  • Caesar J, Janes T, Lindsay A, Bhaskaran B (2015) Temperature and precipitation projections over bangladesh and the upstream Ganges, Brahmaputra and Meghna systems. Environ Sci Process Impacts 17:1047–1056. doi:10.1039/c4em00650j

    Article  Google Scholar 

  • Chung CE, Ramanathan V (2006) Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J Clim 19:2036–2045. doi:10.1175/JCLI3820.1

    Article  Google Scholar 

  • Collins M, Booth BBB, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2006) Towards quantifying uncertainty in transient climate change. Clim Dyn 27(2):127–147. doi:10.1007/s00382-006-0121-0

    Article  Google Scholar 

  • Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15(3):183–203. doi:10.1007/s003820050276

    Article  Google Scholar 

  • Dash SK, Shekhar MS, Singh GP (1980) Simulation of Indian summer monsoon circulation and rainfall using RegCM3. Theor Appl Climatol 86(1–4):161–172. doi:10.1007/s00704-006-0204-1

    Google Scholar 

  • Dash SK, Sharma N, Pattnayak KC, Gao XJ, Shi Y (2012) Temperature and precipitation changes in the north-east India and their future projections. Glob Planet Change 98–99:31–44. doi:10.1016/j.gloplacha.2012.07.006

    Article  Google Scholar 

  • Dash SK, Pattnayak KC, Panda SK, Vaddi D, Mamgain A (2015) Impact of domain size on the simulation of Indian summer monsoon in RegCM4 using mixed convection scheme and driven by HadGEM2. Clim Dyn 44:961–975. doi:10.1007/s00382-014-2420-1

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimbergere L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitarta F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere–atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. 80. National Center for Atmospheric Research, Boulder, CO, p 422. NCAR. doi:10.5065/D67W6959

  • Dimri AP, Niyogi D, Barros AP, Ridley J, Mohanty UC, Yasunari T, Sikka DR (2015) Western disturbances: a review. Rev Geophys 53(2):225–246. doi:10.1002/2014RG000460

    Article  Google Scholar 

  • Dunne JP, John JG, Shevliakova E, Stouffer RJ, Krasting JP, Malyshev SL, Milly PCD, Sentman LT, Adcroft AJ, Cooke W, Dunne KA, Griffies SM, Hallberg RW, Harrison MJ, Levy H, Wittenberg AT, Phillips PJ, Zadeh N (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics. J Clim 26:2247–2267. doi:10.1175/JCLI-D-12-00150.1

    Article  Google Scholar 

  • Flato GM (2011) Earth system models: an overview. WIREs Clim Change 2:783–800. doi:10.1002/wcc.148

    Article  Google Scholar 

  • Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Galvin JFP (2008) The weather and climate of the tropics: part 6 monsoons. Weather 63(5):129–137. doi:10.1002/wea.230

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5(3):643–674. doi:10.1002/jame.20038

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second generation regional climate model (RegCM2). Part I: boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813. doi:10.1175/1520-0493(1993) 121<2794:DOASGR>2.0.CO;2

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Canio GD, Bates GT (1993b) Development of a second-generation regional climate model (RegCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832. doi:10.1175/1520-0493(1993)121<2814:DOASGR>2.0.CO;2

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. doi:10.3354/cr01018

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2/3):147–168. doi:10.1007/s003820050010

    Article  Google Scholar 

  • Gregory D, Rowntree PR (1990) A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon Weather Rev 118:1483–1506. doi:10.1175/1520-0493(1990) 118<1483:AMFCSW>2.0.CO;2

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1994) Description of the fifth generation Penn State/NCAR Mesoscale Model (MM5), vol 121. NCAR, Boulder

    Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34(3):623–642. doi:10.1002/joc.3711

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. doi:10.1175/JHM560.1

    Article  Google Scholar 

  • IPCC (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change, technical report. International Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Islam MN, Rafiuddin M, Ahmed AU, Kolli RK (2008) Calibration of PRECIS in employing future scenarios in Bangladesh. Int J Climatol 28:617–628. doi:10.1002/joc.1559

    Article  Google Scholar 

  • Ji Y, Vernekar AD (1997) Simulation of the Asian Summer Monsoons of 1987 and 1988 with a regional model nested in a global GCM. J Clim 10:1965–1979. doi:10.1175/1520-0442(1997) 010<1965:SOTASM>2.0.CO;2

    Article  Google Scholar 

  • Jones RG, Noguer M, Hassel DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS, Technical report. Met Office Hadley Center, UK

  • Khandu, Awange JL, Anyah R, Kuhn M, Forootan E (2016) Changes and variability of precipitation and temperature in the Ganges–Brahmaputra–Meghna River Basin based on global high-resolution reanalyses. Int J Climatol. doi:10.1002/joc.4842

    Google Scholar 

  • Kiehl J, Hack J, Bonan G, Boville B, Breigleb B, Williamson D, Rasch P (1996) Description of the NCAR community climate model (CCM3), NCAR Technical Report TN-420-STR, National Center for Atmospheric Research (NCAR), Boulder, CO, United States

  • Kitoh A, Endo H (2016) Changes in precipitation extremes projected by a 20-km mesh global atmospheric model. Weather Clim Extremes 11:41–52. doi:10.1016/j.wace.2015.09.001

    Article  Google Scholar 

  • Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90:133–159. doi:10.1007/s00704-006-0282-0

    Article  Google Scholar 

  • Krishnamurthy V, Kinter JL III (2003) The indian monsoon and its relation to global climate variability. In: Rodó X, Comín FA (eds) Global climate. Springer, New York, pp 186–236

    Chapter  Google Scholar 

  • Rupa Kumar K, Sahai AK, Krishna Kumar K, Patwardhan SK, Mishra PK, Revadekar JV, Kamala K, Pant GB (2006) High-resolution climate change scenarios for India for the 21st century. Curr Sci 90(3):334–345

    Google Scholar 

  • Lal M, McGregor JL, Nguyen KC (2008) Very high-resolution climate simulation over Fiji using a global variable-resolution model. Clim Dyn 30:293–305. doi:10.1007/s00382-007-0287-0

    Article  Google Scholar 

  • Lang TJ, Barros AP (2004) Winter storms in the central Himalayas. J Meteorol Soc Jpn 82(3):829–844. doi:10.2151/jmsj.2004.829

    Article  Google Scholar 

  • Lucas-Picher P, Christensen JH, Saeed F, Kumar P, Asharaf S, Ahrens B, Wiltshire AJ, Jacob D, Hagemann S (2011) Can regional climate models represent the Indian Monsoon? J Hydrometeorol 117(5):849–868. doi:10.1175/2011JHM1327.1

    Article  Google Scholar 

  • Mathison C, Wiltshire A, Dimri AP, Falloon P, Jacob D, Kumar P, Moors E, Ridley J, Siderius C, Stoffel M, Yasunari T (2013) Regional projections of North Indian climate for adaptation studies. Sci Total Environ 468–469:4–17. doi:10.1016/j.scitotenv.2012.04.066

    Article  Google Scholar 

  • McSweeney CF, Jones RG, Booth BBB (2012) Selecting ensemble members to provide regional climate change information. J Clim 25(20):7100–7121. doi:10.1175/JCLI-D-11-00526.1

    Article  Google Scholar 

  • McSweeney CF, Jones RG, Lee RW, Rowell DP (2015) Selecting CMIP5 GCMs for downscaling over multiple regions. Clim Dyn 44(11):3237–3260. doi:10.1007/s00382-014-2418-8

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  Google Scholar 

  • Murphy JM, Booth BBB, Collins M, Harris GR, Sexton DMH, Webb MJ (2007) A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Philos Trans A Math Phys Eng Sci 365(1857):1993–2028. doi:10.1098/rsta.2007.2077

    Article  Google Scholar 

  • NEC (2011) Second national communications to the unfccc, technical report. National Environment Commission, Royal Government of Bhutan, Thimphu, Bhutan

  • Oleson KW, Lawrence DM, Bonan GB, Drewniak B, Huang M, Koven CD, Levis S, Li F, Riley WJ, Subin ZM, Swenson SC, Thornton PE, Bozbiyik A, Fisher R, Kluzek E, Lamarque JF, Lawrence PJ, Leung LR, Lipscomb W, Muszala S, Ricciuto DM, Sacks W, Tang J, Sun Y, Yang ZL (2013) Technical description of version 4.5 of the community land model (CLM). 422. National Center for Atmospheric Research, Boulder, CO, p 422. NCAR. doi:10.5065/D6RR1W7M

  • Pal JS (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Mon Weather Rev 88:1395–1409. doi:10.1175/bams-88-9-1395

    Google Scholar 

  • Pal JS, Small E, Eltahir E (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. Geophys Res Lett 105:29579–29594

    Article  Google Scholar 

  • Pervez MS, Henebry GM (2015) Spatial and seasonal responses of precipitation in the Ganges and Brahmaputra river basins to ENSO and Indian Ocean dipole modes: implications for flooding and drought. Nat Hazards Earth Syst Sci 15:147–162. doi:10.5194/nhess-15-147-2015

    Article  Google Scholar 

  • Preisendorfer RW (1988) Principal component analysis in meteorology and oceanography. Elsevier, Amsterdam

    Google Scholar 

  • Rahman MM, Islam MN, Ahmed AU, Georgi F (2012) Rainfall and temperature scenarios for Bangladesh for the middle of 21st century using RegCM. J Earth Syst Sci 121:287–295. doi:10.1007/s12040-012-0159-9

    Article  Google Scholar 

  • Rajendran K, Kitoh A (2008) Indian summer monsoon in future climate projection by a super high-resolution global model. Curr Sci 95:1560–1569

    Google Scholar 

  • Raju PVS, Bhatla R, Almazroui M, Assiri M (2015) Performance of convection schemes on the simulation of summer monsoon features over the South Asia CORDEX domain using RegCM-4.3. Int J Climatol 35(15):4695–4706. doi:10.1002/joc.4317

    Article  Google Scholar 

  • Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci U S A 102(15):5326–5333. doi:10.1073/pnas.0500656102

    Article  Google Scholar 

  • Ramesh KV, Goswami P (2014) Assessing reliability of regional climate projections: the case of Indian monsoon. Sci Rep. doi:10.1038/srep04071

    Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Rao YP (1976) Onset and withdrawal of the monsoon. In: South west monsoon, meteorological monographs, synotpic meteorology, no. 1/1976, 379. Delhi, India: Indian Meteorological Department. Chap. 3

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Roxy MK, Ritika K, Terray P, Masson S (2014) The curious case of Indian Ocean warming. J Clim 27:8501–8509. doi:10.1175/JCLI-D-14-00471.1

    Article  Google Scholar 

  • Rummukainen M (2009) State-of-the-art with regional climate models. WIREs Clim Change 1:82–96. doi:10.1002/wcc.8

    Article  Google Scholar 

  • Rummukainen M, Rockel B, Bärring L, Christensen JH, Reckermann M (2015) Twenty-first-century challenges in regional climate modeling. Bull Am Meteorol Soc 96:135–138. doi:10.1175/BAMS-D-14-00214.1

    Article  Google Scholar 

  • Saeed F, Hagemann S, Jacob D (2009) Impact of irrigation on the South Asian summer monsoon. Geophys Res Lett. doi:10.1029/2009GL040625

    Google Scholar 

  • Saha A, Ghosh S, Sahana AS, Rao EP (2014) Failure of CMIP5 climate models in simulating post-1950 decreasing trend of Indian monsoon. Geophys Res Lett 40(20):7323–7330. doi:10.1002/2014GL061573

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Sengupta A, Rajeevan M (2013) Uncertainty quantification and reliability analysis of CMIP5 projections for the Indian summer monsoon. Curr Sci 105(12):1692–1703

    Google Scholar 

  • Sinha P, Mohanty UC, Kar SC, Dash SK, Kumari S (2013) Sensitivity of the GCM driven summer monsoon simulations to cumulus parameterization schemes in nested RegCM3. Theor Appl Climatol 112(1–2):285–306. doi:10.1007/s00704-012-0728-5

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the advanced research WRF version 3, NCAR technical note NCAR/TN-475+STR, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA. Available at http://www2.mmm.ucar.edu/wrf/users/docs/. Accessed 02 Dec 2013

  • Smith RNB (1990) A scheme for predicting layer clouds and their water content in a general circulation model. Q J R Meteorol Soc 116(492):435–460. doi:10.1002/qj.49711649210

    Article  Google Scholar 

  • Soja R, Starkel L (2007) Extreme rainfalls in Eastern Himalaya and southern slope of Meghalaya Plateau and their geomorphologic impacts. Geomorphology 84(3–4):170–180. doi:10.1016/j.geomorph.2006.01.040

    Article  Google Scholar 

  • Srinivas CV, Hariprasad D, Bhaskar Rao DV, Anjaneyulu Y, Baskaran R, Venkatraman B (2012) Simulation of the Indian summer monsoon regional climate using advanced research WRF model. Theor Appl Climatol 33(5):1195–1210. doi:10.1002/joc.3505

    Google Scholar 

  • Su F, Duan X, Chen D, Hao Z, Cuo L (2012) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26:3187–3208. doi:10.1175/JCLI-D-12-00321.1

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meeh GA (2012) An overview of cmip5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tiwari PR, Kar SC, Mohanty UC, Dey S, Sinha P, Raju PVS (2015) The role of land surface schemes in the regional climate model (RegCM) for seasonal scale simulations over Western Himalaya. Atmósfera 28(2):129–142. doi:10.1016/S0187-6236(15)30005-9

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2:587–595. doi:10.1028/nclimate1495

    Article  Google Scholar 

  • Wang YQ, Leung LR, McGregor JL, Lee DK, Wang WC, Ding YH, Kimura F (2004) Regional climate modeling: progress, challenges, and prospects. Meteorol Soc Jpn 82:1599–1628. doi:10.2151/jmsj.82.1599

    Article  Google Scholar 

  • Yadav RK, Kumar KR, Rajeevan M (2008) Climate change scenarios for Northwest India winter season. Quat Int 213:12–19. doi:10.1016/j.bbr.2011.03.031

    Article  Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93:1401–1415. doi:10.1175/BAMS-D-11-00122.1

    Article  Google Scholar 

Download references

Acknowledgements

Khandu is grateful to Curtin Strategic International Research Scholarship, Curtin University (Australia) for the financial support. He also acknowledges the financial support given by the Prince Albert II of Monaco Foundation and the Intergovernmental Panel on Climate Change (IPCC). J. L. Awange also acknowledges the financial support from Japan Society of Promotion of Science (JSPS). The authors are grateful to APHRODITE, Climate Research Unit (CRU), Global Precipitation Climatology Centre (GPCC), National Aeronautics and Space Administration (NASA), the European Centre for Medium-Range Weather Forecasts (ECMWF) for providing the climate datasets used in this study. Further, the authors also acknowledge Mr. David Hein from the UK Met Office for providing PRECIS model datasets and International Centre for Theoretical Physics (ICTP, Italy) for providing RegCM4.4 and input datasets. The authors are very grateful to Pawsey Supercomputing Centre for providing supercomputing resources to carry out the RegCM4.4 simulations used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khandu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandu, Awange, J.L., Anyah, R. et al. Assessing regional climate simulations of the last 30 years (1982–2012) over Ganges–Brahmaputra–Meghna River Basin. Clim Dyn 49, 2329–2350 (2017). https://doi.org/10.1007/s00382-016-3457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3457-0

Keywords

Navigation