Skip to main content

Advertisement

Log in

Is the global atmospheric model MRI-AGCM3.2 better than the CMIP5 atmospheric models in simulating precipitation over East Asia?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The reproducibility of precipitation over East Asia (110–150°E, 20–50°N) by the Meteorological Research Institute-Atmospheric General Circulation Model version 3.2 (MRI-AGCM3.2) was investigated and compared with those by global atmospheric models participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The 20, 60 and 180-km grid size version of this model were used to evaluate the dependence of model performance on horizontal resolution. The dependence of cumulus convection scheme on model performance was also investigated. All the MRI-AGCM3.2 models and the CMIP5 models were forced with observed historical sea surface temperatures for the period 1979–2003 (25 years). The reproducibility of the MRI-AGCM3.2 models is higher or comparable to that of the CMIP5 models for seasonal average precipitation, the seasonal March of rainy zone and extreme precipitation events. Especially in summer, the advantage of the MRI-AGCM3.2 models over the CMIP5 models is striking in terms of various skill measures. This is partly due to the higher horizontal resolution of the MRI-AGCM3.2 models, but the performance of models is also sensitive to and depends on cumulus convection scheme. The better simulation of summer precipitation over East Asia by the MRI-AGCM3.2 models can be partly attributed to the better simulation of precipitation, the West Pacific Subtropical High and the local Hadley circulation in the tropics. This study highlights that higher reproducibility of summertime precipitation over East Asia requires proper simulation not only for tropical circulation but also for the strong dynamical linkage between precipitation over East Asia and tropical circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferrano R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology preject (GPCP) monthly precipitation analysis (1979–present). J Hydrometeor 4:1147–1167. doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22:2276–2301. doi:10.1175/2008JCLI2678.1

    Article  Google Scholar 

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630. doi:10.1175/JCLI3884.1

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Ding YH (1994) The summer monsoon in East Asia. In: Monsoons over China. Kluwer Academic, pp 1–90

  • Ding YH (2004) Seasonal March of the East-Asian summer monsoon. In: Chang C-P (ed) East Asian monsoons. World Scientific, pp 3–53

  • Ding YH, Sikka DR (2006) Synoptic systems and weather. In: Wang B (ed) The Asian monsoon. Springer, pp 131–201

  • Endo H, Kitoh A, Ose T, Mizuta R, Kusunoki S (2012) Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi-sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J Geophys Res 117:D16118. doi:10.1029/2012JD017874

    Article  Google Scholar 

  • Feng L, Zhou T, Wu B, Li T, Luo JL (2011) Projection of future precipitation change over China with a high-resolution global atmospheric model. Adv Atmos Sci 28(2):464–476. doi:10.1007/s00376-010-0016-1

    Article  Google Scholar 

  • Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212. doi:10.3354/cr019193

    Article  Google Scholar 

  • Gao X, Xu Y, Zhao Z, Pal JS, Giorgi F (2006) On the role of resolution and topography in the simulation of East Asia precipitation. Theor Appl Climatol 86:173–185. doi:10.1007/s00704-005-0214-4

    Article  Google Scholar 

  • Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:D06104. doi:10.1029/2007JD008972

    Article  Google Scholar 

  • Guo Z, Zhou T, Wang M, Qian Y (2015) Impact of cloud radiative heating on East Asian summer monsoon circulation. Environ Res Lett 10:074014. doi:10.1088/1748-9326/10/7/074014

    Article  Google Scholar 

  • He C, Zhou T (2014) The two interannual variability modes of the Western North Pacific Subtropical High simulated by 28 CMIP5-AMIP models. Clim Dyn 43:2455–2469. doi:10.1007/s00382-014-2068-x

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeor 2:36–50. doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeor 8:38–55. doi:10.1175/JHM560.1

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 996

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1535

  • IPCC (Intergovernmental Panel on Climate Change) (2001) Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 881

  • Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802. doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2

    Article  Google Scholar 

  • Kanada S, Nakano M, Hayashi S, Kato T, Nakamura M, Kurihara K, Kitoh A (2008) Reproducibility of maximum daily precipitation amount over Japan by a high-resolution non-hydrostatic model. SOLA 4:105–108. doi:10.2151/sola.2008-027

    Article  Google Scholar 

  • Kang IS, Jin K, Wang B, Lau KM, Shukla J, Krishnamurthy V, Schubert SD, Wailser DE, Stern WF, Kitoh A, Meehl GA, Kanamitsu M, Galin VY, Satyan V, Park CK, Liu Y (2002) Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Clim Dyn 19:383–395. doi:10.1007/s00382-002-0245-9

    Article  Google Scholar 

  • Kitoh A, Kusunoki S (2008) East Asian summer monsoon simulation by a 20-km mesh AGCM. Clim Dyn 31:389–401. doi:10.1007/s00382-007-0285-2

    Article  Google Scholar 

  • Kitoh A, Ose T, Kurihara K, Kusunoki S, Sugi M, KAKUSHIN Team-3 Modeling Group (2009) Projection of changes in future weather extremes using super-high-resolution global and regional atmospheric models in the KAKUSHIN Program: results of preliminary experiments. Hydrol Res Lett 3:49–53. doi:10.3178/HRL.3.49

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93:5–48. doi:10.2151/jmsj.2015-001

    Article  Google Scholar 

  • Kurihara K (1989) A climatological study on the relationship between the Japanese summer weather and the subtropical high in the western northern Pacific. Geophys Mag 43:45–104

    Google Scholar 

  • Kusunoki S, Arakawa O (2012) Change in the precipitation intensity of the East Asian summer monsoon projected by CMIP3 models. Clim Dyn 38:2055–2072. doi:10.1007/s00382-011-1234-7

    Article  Google Scholar 

  • Kusunoki S, Arakawa O (2015) Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J Clim 28:5601–5621. doi:10.1175/JCLI-D-14-00585.1

    Article  Google Scholar 

  • Kusunoki S, Mizuta R (2013) Changes in precipitation intensity over East Asia during the 20th and 21st centuries simulated by a global atmospheric model with a 60 km grid size. J Geophys Res Atmos 118:11007–11016. doi:10.1002/jgrd.50877

    Article  Google Scholar 

  • Kusunoki S, Sugi M, Kitoh A, Kobayashi C, Takano K (2001) Atmospheric seasonal predictability experiments by the JMA AGCM. J Meteorol Soc Jpn 79:1183–1206. doi:10.2151/jmsj.79.1183

    Article  Google Scholar 

  • Kusunoki S, Yoshimura J, Yoshimura H, Noda A, Oouchi K, Mizuta R (2006) Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size. J Meteorol Soc Jpn 84:581–611. doi:10.2151/jmsj.84.581

    Article  Google Scholar 

  • Kusunoki S, Mizuta R, Hosaka M (2015) Future changes in precipitation intensity over the Arctic projected by a global atmospheric model with a 60-km grid size. Polar Sci 9:277–292. doi:10.2467/mripapers.65.15

    Article  Google Scholar 

  • Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of coupled climate models. Clim Dyn 17:83–106. doi:10.1007/PL00013736

    Article  Google Scholar 

  • Lau K-M, Li M-T (1984) The monsoon of East Asia and its global association—a survey. Bull Am Meteorol Soc 65:114–125. doi:10.1175/1520-0477(1984)065<0114:TMOEAA>2.0.CO;2

    Article  Google Scholar 

  • Lau KM, Yang S (1996) Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM. J Clim 9:965–985. doi:10.1175/1520-0442(1996)009<0965:SVATAI>2.0.CO;2

    Article  Google Scholar 

  • Lau KM, Kim JH, Sud Y (1996) Intercomparison of hydrologic processes in AMIP GCMs. Bull Am Meteorol Soc 77:2209–2227. doi:10.1175/1520-0477(1996)077<2209:IOHPIA>2.0.CO;2

    Article  Google Scholar 

  • Liang XZ, Wang WC, Samel AN (2001) Biases in AMIP model simulations of the east China monsoon system. Clim Dyn 17:291–304. doi:10.1007/s003820000136

    Article  Google Scholar 

  • Mizuta R, Yoshimura H, Murakami H, Matsueda M, Endo H, Ose T, Kamiguchi K, Hosaka M, Sugi M, Yukimoto S, Kusunoki S, Kitoh A (2012) Climate simulations using MRI-AGCM3.2 with 20-km grid. J Meteorol Soc Jpn 90A:233–258. doi:10.2151/jmsj.2012-A12

    Article  Google Scholar 

  • Murakami H, Sugi M (2010) Effect of model resolution on tropical cyclone climate projections. SOLA 6:73–76. doi:10.2151/sola.2010-019

    Article  Google Scholar 

  • Murakami H, Wang Y, Yoshimura H, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S, Ose T, Kitoh A (2012a) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J Clim 25:3237–3260. doi:10.1175/JCLI-D-11-00415.1

    Article  Google Scholar 

  • Murakami H, Mizuta R, Shindo E (2012b) Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Clim Dyn 39:2569–2584. doi:10.1007/s00382-011-1223-x

    Article  Google Scholar 

  • Murakami H, Sugi M, Kitoh A (2013a) Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs. Clim Dyn 40:1949–1968. doi:10.1007/s00382-012-1407-z

    Article  Google Scholar 

  • Murakami H, Wang B, Li T, Kitoh A (2013b) Projected increase in tropical cyclones near Hawaii. Nat Clim Change 3:749–754. doi:10.1038/NCLIMATE1890

    Article  Google Scholar 

  • Ninomiya K, Kobayashi C (1999) Precipitation and moisture balance of the Asian summer monsoon in 1991. Part II: moisture transport and moisture balance. J Meteorol Soc Jpn 77:77–99

    Article  Google Scholar 

  • Ogata T, Ueda H, Inoue T, Hayasaki M, Yoshida A, Watanabe S, Kira M, Ooshiro M, Kumai A (2014) Projected future changes in the Asian monsoon: a comparison of CMIP3 and CMIP5 model results. J Meteorol Soc Jpn 92:207–225. doi:10.2151/jmsj.2014-302

    Article  Google Scholar 

  • Randall DA, Pan DM (1993) Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. In: The representation of cumulus convection in numerical models, Meteorological Monographs, vol 24, no 46, chapter 11, pp 137–147

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89:303–311. doi:10.1175/BAMS-89-3-303

    Article  Google Scholar 

  • Shibata K, Deushi M, Sekiyama TT, Yoshimura H (2004) Development of an MRI chemical transport model for the study of stratospheric chemistry. Pap Meteorol Geophys 55:75–119. doi:10.2467/mripapers.55.75

    Article  Google Scholar 

  • Song F, Zhou T (2014) Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J Clim 27:1679–1697. doi:10.1175/JCLI-D-13-00248.1

    Article  Google Scholar 

  • Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner AG, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744. doi:10.1007/S00382-012-1607-6

    Article  Google Scholar 

  • Sugi M, Yoshimura J (2012) Decreasing trend of tropical cyclone frequency in 228-year high-resolution AGCM simulations. Geophys Res Lett 39:L19805. doi:10.1029/2012GL053360

    Article  Google Scholar 

  • Tao SY, Chen LX (1987) A review of recent research on the East Asian summer monsoon in China. In: Chang CP, Krishnamurti TN (eds) Monsoon meteorology. Oxford University Press, Oxford, pp 60–92

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192. doi:10.1029/2000JD900719

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800. doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2

    Article  Google Scholar 

  • Tu K, Yan ZW, Zhang XB, Dong WJ (2009) Simulation of precipitation in monsoon regions of China by CMIP3 models. Atmos Ocean Sci Lett 2:194–200

    Article  Google Scholar 

  • Wang B, Ho L (2002) Rainy season of the Asian-Pacific summer monsoon. J Clim 15:386–398. doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2

    Article  Google Scholar 

  • Xie P, Arkin P (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558. doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2

    Article  Google Scholar 

  • Yin X, Gruber A, Arkin P (2004) Comparison of the GPCP and CMAP merged gauge-satellite monthly precipitation products for the period 1979-2001. J Hydrometeorol 5:1207–1222. doi:10.1175/JHM-392.1

    Article  Google Scholar 

  • Yoshimura H, Mizuta R, Murakami H (2015) A spectral cumulus parameterization scheme interpolating between two convective updrafts with semi-lagrangian calculation of transport by compensatory subsidence. Mon Weather Rev 143:597–621. doi:10.1175/MWR-D-14-00068.1

    Article  Google Scholar 

  • Yukimoto S, Yoshimura H, Hosaka M, Sakami T, Tsujino H, Hirabara M, Tanaka T, Deushi M, Obata A, Nakano H, Adachi Y, Shindo E, Yabu S, Ose T, Kitoh A (2011) Meteorological Research Institute-Earth System Model version 1 (MRI-ESM1)—Model description. Technical Reports of the Meteorological Research Institute 64, p 88

  • Zhou T, Li Z (2002) Simulation of the east asian summer monsoon using a variable resolution atmospheric GCM. Clim Dyn 19:167–180. doi:10.1007/s00382-001-0214-8

    Article  Google Scholar 

  • Zhou T, Yu R (2005) Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J Geophys Res 110:D08104. doi:10.1029/2004JD005413

    Article  Google Scholar 

  • Zhou T, Wu B, Wang B (2009) How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon? J Clim 22:1159–1173. doi:10.1175/2008JCLI2245.1

    Article  Google Scholar 

  • Zou L, Zhou T (2013) Can a regional ocean-atmosphere coupled model improve the simulation of the interannual variability of the western North Pacific summer monsoon? J Clim 26:2353–2367. doi:10.1175/JCLI-D-11-00722.1

    Article  Google Scholar 

  • Zou L, Zhou T, Li L, Zhang J (2010) East China summer rainfall variability of 1958–2000: dynamical downscaling with a variable-resolution AGCM. J Clim 23:6394–6408. doi:10.1175/2010JCLI3689.1

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted under the framework of “the Development of Basic Technology for Risk Information on Climate Change” supported by the SOUSEI Program of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan. This study was supported by the Environment Research and Technology Development Fund (2-1503) of the Ministry of the Environment, Japan. We also acknowledge the “Data Integration and Analysis System(DIAS)” Fund for National Key Technology from the MEXT of Japan. We acknowledge the international modeling groups for providing model data for our analysis, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the CMIP5 and CMIP3 multi model data, and the Joint Scientific Committee (JSC)/CLIVAR Working Group on Coupled Modelling (WGCM). The data archive at the Lawrence Livermore National Institute (LLNI) is supported by the Office of Science, U.S. Department of Energy. We also thank the anonymous reviewers whose valuable comments and suggestions greatly improved the manuscript. Thanks are extended to the support and collaboration by Drs. R. Mizuta, K. Yoshida, O. Arakawa, T. Ose, A. Kitoh and I. Takayabu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Kusunoki.

Additional information

This paper is a contribution to the special issue on East Asian Climate under Global Warming: Understanding and Projection, consisting of papers from the East Asian Climate (EAC) community and the 13th EAC International Workshop in Beijing, China on 24–25 March 2016, and coordinated by Jianping Li, Huang-Hsiung Hsu, Wei-Chyung Wang, Kyung-Ja Ha, Tim Li, and Akio Kitoh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusunoki, S. Is the global atmospheric model MRI-AGCM3.2 better than the CMIP5 atmospheric models in simulating precipitation over East Asia?. Clim Dyn 51, 4489–4510 (2018). https://doi.org/10.1007/s00382-016-3335-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3335-9

Keywords

Navigation