Skip to main content

Advertisement

Log in

Non-annular, hemispheric signature of the winter North Atlantic Oscillation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Sensitivity experiments with an atmospheric general circulation model (AGCM) without a proper stratosphere are performed to locally force a North Atlantic oscillation (NAO)-like response in order to analyse the tropospheric dynamics involved in its hemispheric extent. Results show that the circulation anomalies are not confined to the North Atlantic basin not even within the first 10 days of integration, where the atmospheric response propagates downstream into the westerly jets. At this linear stage, transient-eddy activity dominates the emerging, regional NAO-like pattern while zonal-eddy coupling may add on top of the wave energy propagation. Later at the quasi-equilibrium nonlinear stage, the atmospheric response emphasizes a wavenumber-5 structure embedded in the westerly jets, associated with transient-eddy feedback upon the Atlantic and Pacific storm-tracks. This AGCM waveguided structure rightly projects on the observational NAO-related circumglobal pattern, providing evidence of its non-annular character in the troposphere. These findings support the view on the importance of the circumglobal waveguide pattern on the development of NAO-related anomalies at hemispheric level. It could help to settle a consensus view of the Arctic Oscillation, which has been elusive so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ambaum MHP, Hoskins BJ (2002) The NAO troposphere-stratosphere connection. J Clim 15:1969–1978

    Article  Google Scholar 

  • Ambaum MHP, Hoskins BJ, Stephenson DB (2001) Arctic oscillation or North Atlantic Oscillation? J Clim 14:3495–3507

    Article  Google Scholar 

  • Ambrizzi T, Hoskins BJ (1997) Stationary Rossby-wave propagation in a baroclinic atmosphere. Q J R Meteorol Soc 123:919–928

    Article  Google Scholar 

  • Andrews DG, Holton JR, Leovy CB (1987) Middle atmospheric dynamics. Academic Press, London

    Google Scholar 

  • Annamalai H, Okajima H, Watanabe M (2007) Possible impact of the Indian Ocean SST on the Northern Hemisphere circulation during El Niño. J Clim 20:3164–3189

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584

    Article  Google Scholar 

  • Baldwin MP, Cheng X, Dunkerton TJ (1994) Observed correlations between winter-mean tropospheric and stratospheric circulation anomalies. Geophys Res Lett 21:1141–1144

    Article  Google Scholar 

  • Baldwin MP, Stephenson DB, Thompson DJ, Dunkerton TJ, Charlton AJ, O’Neill A (2003) Stratospheric memory and skill of extended-range weather forecasts. Science 301:636–640

    Article  Google Scholar 

  • Bleck R, Rooth C, Smith LT (1992) Salinity-driven thermocline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic. J Phys Oceanogr 22:1486–1505

    Article  Google Scholar 

  • Bracco A, Kucharski F, Kallummal R, Molteni F (2004) Internal variability, external forcing, and climate trends in multi-decadal AGCM ensembles. Clim Dyn 23:659–678

    Article  Google Scholar 

  • Branstator G (2002) Circum global teleconnections, the jetstream waveguide, and the North Atlantic Oscillation. J Clim 15:1893–1910

    Article  Google Scholar 

  • Branstator G, Selten F (2009) “Modes of variability” and climate change. J Clim 22:2639–2658

    Article  Google Scholar 

  • Chang EKM, Fu Y (2002) Interdecadal variations in Northern Hemisphere winter storm track intensity. J Clim 15:642–658

    Article  Google Scholar 

  • Christiansen B (2002) On the physical nature of the Arctic Oscillation. Geophys Res Lett. doi:10.1029/2002GL015208

    Google Scholar 

  • Cohen J, Saito K (2002) A test for annular modes. J Clim 15:2537–2546

    Article  Google Scholar 

  • Davini P, Cagnazzo C, Neale R, Tribbia J (2012) Coupling between Greenland blocking and the North Atlantic Oscillation pattern. Geophys Res Lett 39:L14701. doi:10.1029/2012GL052315

    Article  Google Scholar 

  • Davini P, Cagnazzo C, Anstey JA (2014) A blocking view of the stratosphere-troposphere coupling. J Geophys Res Atmos. doi:10.1002/2014JD021703

    Google Scholar 

  • Deser C (2000) On the teleconnectivity of the “Arctic Oscillation”. Geophys Res Lett 27:779–782

    Article  Google Scholar 

  • Deser C, Tomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Clim 20:4751–4767

    Article  Google Scholar 

  • DeWeaver E, Nigam S (2000a) Do stationary waves drive the zonal-mean jet anomalies of the northern winter? J Clim 13:2160–2176

    Article  Google Scholar 

  • DeWeaver E, Nigam S (2000b) Zonal-eddy dynamics of the North Atlantic Oscillation. J Clim 13:3893–3914

    Article  Google Scholar 

  • Dommenget D, Latif M (2002) A cautionary note on the interpretation of EOFs. J Clim 15:216–225

    Article  Google Scholar 

  • Feldstein SB, Franzke C (2006) Are the North Atlantic Oscillation and the Northern Annular Mode distinguishable? J Atmos Sci 63:2915–2930

    Article  Google Scholar 

  • Ferreira D, Frankignoul C (2005) The transient atmospheric response to midlatitude SST anomalies. J Clim 18:1049–1067

    Article  Google Scholar 

  • García-Serrano J, Rodríguez-Fonseca B, Bladé I, Zurita-Gotor P, de la Cámara A (2011) Rotational atmospheric circulation during North Atlantic-European winter: the influence of ENSO. Clim Dyn 37:1727–1743

    Article  Google Scholar 

  • Garfinkel CI, Waugh DW, Gerber EP (2013) The effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J Clim 26:2077–2095

    Article  Google Scholar 

  • Gerber EP, Vallis GK (2009) On the zonal structure of the North Atlantic Oscillation and annular modes. J Atmos Sci 66:332–352

    Article  Google Scholar 

  • Haarsma RJ, Campos EJD, Hazeleger W, Severijns C, Piola AR, Molteni F (2005) Dominant modes of variability in the South Atlantic: a study with a hierarchy of ocean-atmosphere models. J Clim 18:1719–1735

    Article  Google Scholar 

  • Haarsma RJ, Campos EJD, Hazeleger W, Severijns C (2008) Influence of the meridional overturning circulation on tropical Atlantic climate and variability. J Clim 21:1403–1416

    Article  Google Scholar 

  • Hazeleger W, Haarsma RJ (2005) Sensitivity of tropical Atlantic climate to mixing in a coupled ocean-atmosphere model. Clim Dyn 25:387–399

    Article  Google Scholar 

  • Hazeleger W, Severijns C, Haarsma RJ, Selten F, Sterl A (2003) SPEEDO-model description and validation of a flexible coupled model for climate studies. KNMI Tech Rep TR-257, KNMI, De Bilt, Netherlands

  • Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally varying flow. J Atmos Sci 50:1661–1671

    Article  Google Scholar 

  • Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47:1854–1864

    Article  Google Scholar 

  • Hoskins BJ, James IN, White GH (1983) The shape, propagation and mean-flow interaction of large-scale weather systems. J Atmos Sci 40:1595–1612

    Article  Google Scholar 

  • Hsu H-H, Lin S-H (1992) Global teleconnections in the 250-mb streamfunction field during the North Hemisphere winter. Mon Wea Rev 120:1169–1190

    Article  Google Scholar 

  • Hurrell JW, Deser C (2009) North Atlantic climate variability: the role of the North Atlantic Oscillation. J Mar Syst 78:28–41

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: The North Atlantic Oscillation—climatic significance and environmental impact. AGU Geophys Monogr 134:1–36

  • Huth R (2006) Pacific centre of the Arctic Oscillation: product of high local variability rather than teleconnectivity. Tellus 58A:601–604

    Article  Google Scholar 

  • Kimoto M, Jin F-F, Watanabe M, Yasutomi N (2001) Zonal-eddy coupling and a neutral mode theory for the Arctic Oscillation. Geophys Res Lett 28:737–740

    Article  Google Scholar 

  • Kindem IT, Christiansen B (2001) Tropospheric response to stratrospheric ozone loss. Geophys Res Lett 28:1547–1550

    Article  Google Scholar 

  • King MP, Kucharski F, Molteni F (2010) The roles of external forcings and internal variabilities in the Northern Hemisphere atmospheric circulation change from the 1960s to the 1990s. J Clim 23:6200–6220

    Article  Google Scholar 

  • Kucharski F, Molteni F (2003) On non-linearities in a forced North Atlantic Oscillation. Clim Dyn 21:677–687

    Article  Google Scholar 

  • Kucharski F, Molteni F, King MP, Farneti R, Kang I-S, Feudale L (2013) On the need of intermediate complexity general circulation models: a “SPEEDY” example. Bull Amer Meteor Soc 94:25–30

    Article  Google Scholar 

  • Li LZX (2006) Atmospheric GCM response to an idealized anomaly of the Mediterranean sea surface temperature. Clim Dyn 27:543–552

    Article  Google Scholar 

  • Li LZX, Conil S (2003) Transient response of an atmospheric GCM to North Atlantic SST anomalies. J Clim 16:3993–3998

    Article  Google Scholar 

  • Lu R-Y, Oh J-H, Kim B-J (2002) A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus 54A:44–55

    Article  Google Scholar 

  • Magnusdottir G, Haynes PH (1996) Wave activity diagnostics applied to baroclinic wave life cycles. J Atmos Sci 53:2317–2353

    Article  Google Scholar 

  • Molteni F (2003) Atmospheric simulations using a GCM with simplified physical parametrizations. I: model climatology and variability in multi-decadal experiments. Clim Dyn 20:175–191

    Google Scholar 

  • Nigam S (2003) Teleconnections. In: Holton JR, Pyle JA, Curry JA (eds) Encyclopedia of atmospheric sciences. Academic Press, Elsevier Science, pp 2243–2269

    Chapter  Google Scholar 

  • Norton WA (2003) Sensitivity of Northern Hemisphere surface climate to simulation of the stratospheric polar vortex. Geophys Res Lett 30 doi:10.1029/2003GL016958

  • Perlwitz J, Graf H-F (1995) The statistical connection between tropospheric and stratospheric circulation of the Northern Hemisphere in winter. J Clim 8:2281–2295

    Article  Google Scholar 

  • Rivière G, Orlanski I (2007) Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J Atmos Sci 64:241–266

    Article  Google Scholar 

  • Shaw TA, Perlwitz J, Weiner O (2014) Troposphere-stratosphere coupling: links to North Atlantic weather and climate, including their representation in CMIP5 models. J Geophys Res Atmos 119:5864–5880

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Strong C, Magnusdottir G (2008) Tropospheric Rossby wave breaking and the NAO/NAM. J Atmos Sci 65:2861–2876

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2001) Regional climate impacts of the Northern Hemisphere annular mode. Science 293:85–89

    Article  Google Scholar 

  • Thompson DWJ, Lee S, Baldwin MP (2003) Atmospheric processes governing the Northern Hemisphere Annular Mode/North Atlantic Oscillation. In: The North Atlantic Oscillation—climatic significance and environmental impact. AGU Geophys Monogr 134:81–112

  • Trenberth KE, Branstator G, Karoly D, Kumar A, Lau N-C, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical seas surface temperatures. J Geophys Res 103:14291–14324

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Vallis GK, Gerber EP (2008) Local and hemispheric dynamics of the North Atlantic Oscillation, annular patterns and the zonal index. Dyn Atmos Ocean 44:184–212

    Article  Google Scholar 

  • von Storch H, Zwiers FW (2001) Statistical analysis in climate research. Cambridge University Press, UK

    Google Scholar 

  • Wallace JM (2000) North Atlantic Oscillation/annular mode: two paradigms-one phenomenon. Q J R Meteorol Soc 126:791–805

    Article  Google Scholar 

  • Wallace JM, Thompson DW (2002) The Pacific center of action of the Northern Hemisphere Annular Mode: real or artifac? J Clim 15:1987–1991

    Article  Google Scholar 

  • Wallace JM, Lim G-H, Blackmon ML (1988) Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J Atmos Sci 45:439–462

    Article  Google Scholar 

  • Watanabe M (2004) Asian jet waveguide and downstream extension of the North Atlantic Oscillation. J Clim 17:4674–4691

    Article  Google Scholar 

  • Watanabe M (2009) Self-limiting feedback between baroclinic waves and a NAO-like sheared zonal flow. Geophys Res Lett 36:L08803. doi:10.1029/2009GL037176

    Article  Google Scholar 

  • Watanabe M, Jin F-F (2004) Dynamical prototype of the Arctic Oscillation as revealed by a neutral singular vector. J Clim 17:2119–2138

    Article  Google Scholar 

  • Wettstein JJ, Wallace JM (2010) Observed patterns of month-to-month sotrm-track variability and their relationship to the background flow. J Atmos Sci 67:1420–1437

    Article  Google Scholar 

  • Woollings T, Hoskins BJ, Blackburn M, Berrisford P (2008) A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J Atmos Sci 65:609–626

    Article  Google Scholar 

  • Woollings T, Hannachi A, Hoskins BJ, Turner A (2010) A regime view of the North Atlantic Oscillation and its response to anthropogenic forcing. J Clim 23:1291–1307

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the CANON Foundation in Europe (Grant 2011-062). JG-S was partially supported by the H2020-funded MSCA-IF-EF DPETNA project (GA No. 655339). Thanks to Mashiro Watanabe and Masato Mori (AORI, University of Tokyo) for useful discussions in the early stages of this study. Thanks also to Francisco J. Doblas-Reyes (BSC, Spain) and Pablo Zurita-Gotor (UCM, Spain) for their help during the review process. Technical support at BSC (Computational Earth Sciences group) is sincerely acknowledged. The authors are grateful to the anonymous reviewers for their encouragement and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. García-Serrano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Serrano, J., Haarsma, R.J. Non-annular, hemispheric signature of the winter North Atlantic Oscillation. Clim Dyn 48, 3659–3670 (2017). https://doi.org/10.1007/s00382-016-3292-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3292-3

Keywords

Navigation