Skip to main content

Advertisement

Log in

Quantification of the relative role of land-surface processes and large-scale forcing in dynamic downscaling over the Tibetan Plateau

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Dynamical downscaling modeling (DDM) is important to understand regional climate change and develop local mitigation strategies, and the accuracy of DDM depends on the physical processes involved in the regional climate model as well as the forcing datasets derived from global models. This study investigates the relative role of the land surface schemes and forcing datasets in the DDM over the Tibet Plateau (TP), a region complex in topography and vulnerable to climate change. Three Weather Research and Forecasting model dynamical downscaling simulations configured with two land surface schemes [Noah versus Noah with multiparameterization (Noah-MP)] and two forcing datasets are performed over the period of 1980–2005. The downscaled temperature and precipitation are evaluated with observations and inter-compared regarding temporal trends, spatial distributions, and climatology. Results show that the temporal trends of the temperature and precipitation are determined by the forcing datasets, and the forcing dataset with the smallest trend bias performs the best. Relative to the forcing datasets, land surface processes play a more critical role in the DDM over the TP due to the strong heating effects on the atmospheric circulation from a vast area at exceptionally high elevations. By changing the vertical profiles of temperature in the atmosphere and the horizontal patterns of moisture advection during the monsoon seasons, the land surface schemes significantly regulate the downscaled temperature and precipitation in terms of climatology and spatial patterns. This study emphasizes the selection of land surface schemes is of crucial importance in the successful DDM over the TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, pp 221–224, Progress in photosynthesis research, Springer

  • Barlage M, Tewari M, Chen F, Miguez-Macho G, Yang Zong-Liang, Liu GY (2015) The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Clim Change. doi:10.1007/s10584-014-1308-8

    Google Scholar 

  • Betts AK, Ball JH, Beljaars ACM, Miller MJ, Viterbo PA (1996) The land surface-atmosphere interaction: a review based on observational and global modeling perspectives. J Geophys Res-Atmos 101(D3):7209–7225. doi:10.1029/95jd02135

    Article  Google Scholar 

  • Cai X, Yang Z-L, David CH, Niu G-Y, Rodell M (2014) Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin. J Geophys Res Atmos 119:23–38. doi:10.1002/2013JD020792

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129(4):569–585

    Article  Google Scholar 

  • Chen F, Mitchell K, Schaake J, Xue Y, Pan H, Koren V, Duan Y, Ek M, Betts A (1996) Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J Geophys Res 101:7251–7268

    Article  Google Scholar 

  • Chen F, Janjic Z, Mitchell K (1997) Impact of atmospheric surface layer parameterization in the new land-surface scheme of the NCEP mesoscale Eta numerical model. Bound Layer Meteorol 85:391–421

    Article  Google Scholar 

  • Chen FM, Barlage M, Tewari R, Rasmussen R, Jin J, Lettenmaier D, Livneh B, Lin C, Miguez-Macho G, Niu G-Y, Wen L, Yang Z-L (2014) Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: a model inter-comparison study. J Geophys Res 119:13795–13819. doi:10.1002/2014JD022167

    Google Scholar 

  • Chen F, Zhang G, Barlage M, Zhang Y, Hicke JA, Meddens A, Zhou G, Massman WJ, Frank J (2015) An observational and modeling study of impacts of beetle-caused mortality on surface energy and hydrological cycles. J Hydrometeor. doi:10.1175/JHM-D-14-0059.1

    Google Scholar 

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B, Bitz C, Lin S (2004) Description of the NCAR community atmosphere model (CAM 3.0), NCAR Tech. Note NCAR/TN-464+STR, 226

  • Collins WD et al (2006) The Community Climate System Model version 3 (CCSM3). J Clim 19(11):2122–2143. doi:10.1175/jcli3761.1

    Article  Google Scholar 

  • Dee DP, Uppala S (2009) Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q J Roy Meteor Soc 135(644):1830–1841

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteor Soc 137(656):553–597

    Article  Google Scholar 

  • Dickinson RE, Shaikh M, Byrant R, Graumlich L (1998) Interactive canopies for a climate model. J Clim 11(11):2823–2836. doi:10.1175/1520-0442(1998)011<2823:icfacm>2.0.co;2

    Article  Google Scholar 

  • Duffy PB, Arritt RW, Coquard J, Gutowski W, Han J, Iorio J, Kim J, Leung LR, Roads J, Zeledon E (2006) Simulations of present and future climates in the western United States with four nested regional climate models. J Clim 19(6):873–895

    Article  Google Scholar 

  • Entekhabi D, Rodriguez-Iturbe I, Castelli F (1996) Mutual interaction of soil moisture state and atmospheric processes. J Hydrol 184(1–2):3–17. doi:10.1016/0022-1694(95)02965-6

    Article  Google Scholar 

  • Frank WM (1983) The Cumulus parameterization problem. Mon Wea Rev 111:1859–1871. doi:10.1175/1520-0493(1983)111<1859:TCPP>2.0.CO;2

    Article  Google Scholar 

  • Gao X, Zhao Z, Filippo G (2002) Changes of extreme events in regional climate simulations over East Asia. Adv Atmos Sci 19(5):927–942

    Article  Google Scholar 

  • Gao Y, Lu S, Cheng G (2004) Simulation of rainfall and watershed convergence Process in upper reaches of Heihe River Basin. Sci China Ser D Earth Sci 47(1):1–8

    Article  Google Scholar 

  • Gao YH, Vano JA, Zhu CM, Lettenmaier DP (2011a) Evaluating climate change over the Colorado River basin using regional climate models. J Geophys Res-Atmos 116(D13) doi:10.1029/2010JD015278

  • Gao YH, Xue YK, Peng W, Kang HS, Waliser D (2011b) Assessment of dynamic downscaling of the extreme rainfall over East Asia using a regional climate model. Adv Atmos Sci 28(5):1077–1098

    Article  Google Scholar 

  • Gao YH, Leung LR, Salathe EP, Dominguez F, Nijssen B, Lettenmaier DP (2012) Moisture flux convergence in regional and global climate models: implications for droughts in the southwestern United States under climate change. Geophys Res Lett. doi:10.1029/2012GL051560

    Google Scholar 

  • Gao Y, Cuo L, Zhang Y (2014) Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. J Clim 27:1876–1893. doi:10.1175/JCLI-D-13-00321.1

    Article  Google Scholar 

  • Gao Y, Xu J, Chen D (2015a) Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979-2011. J Clim 28(7):2823–2841. doi:10.1175/JCLI-D-14-00300.1

    Article  Google Scholar 

  • Gao Y, Li X, Leung RL, Chen D, Xu J (2015b) Aridity changes in the Tibet Plateau in a warming climate. Environ Res Lett. doi:10.1088/1748-9326/10/3/034013,10034013

    Google Scholar 

  • Gao Y, Ruby Leung L, Zhang Y, Cuo Lan (2015c) Changes in moisture flux over the Tibetan Plateau during 1979–2011: insights from the high resolution simulation. J Clim 28(10):4185–4197. doi:10.1175/JCLI-D-14-00581.1

    Article  Google Scholar 

  • Gao Y, Li K, Chen F, Jiang Y, Lu C (2015d) Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau. J. Geophys. Res. Atmos. doi:10.1002/2015JD023404

    Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M (2011) The Community Climate System Model Version 4. J Clim 24(19):4973–4991

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121(3):764–787

    Article  Google Scholar 

  • Hong S-Y, Pan H-L (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev 124(10):2322–2339

    Article  Google Scholar 

  • Hong S-Y, Lim KSS, Lee YH, Ha JC, Kim HW, Ham SJ, Hong J, Dudhia S-Y (2010) Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv Meteorol. doi:10.1155/2010/707253

    Google Scholar 

  • Krause P, Biskop S, Helmschrot J, Flügel W-A, Kang S, Gao T (2010) Hydrological system analysis and modelling of the Nam Co basin in Tibet. Adv Geosci 27:29–36. doi:10.5194/adgeo-27-29-2010

    Article  Google Scholar 

  • Kug J-S, Lee J-Y, Kang I-S (2008) Systematic error correction of dynamical seasonal prediction of sea surface temperature using a stepwise pattern project method. Mon Weather Rev 136:3501–3512

    Article  Google Scholar 

  • Laprise RL, Hernández-Díaz K, Tete L, Sushama Šeparović L, Martynov A, Winger K, Valin M (2013) Climate projections over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Clim Dyn 41:3219–3246

    Article  Google Scholar 

  • Leung LR, Kuo YH, Tribbia J (2006) Research needs and directions of regional climate modeling using WRF and CCSM. Bull Am Meteorol Soc 87(12):1747–1751

    Article  Google Scholar 

  • Li K, Gao YH, Chen F (2015) Simulation of impact of roots on soil moisture and surface fluxes over central Qinghai-Xizang Plateau. Plateau Meteorol 34(3):624–654

    Google Scholar 

  • Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20(14):1729–1742. doi:10.1002/1097-0088(20001130)20:14<1729:aid-joc556>3.0.co;2-y

    Article  Google Scholar 

  • Mearns LO, Gutowski W, Jones R, Leung R, McGinnis S, Nunes A, Qian Y (2009) A regional climate change assessment program for North America. Eos Trans Am Geophys Union 90(36):311–311

    Article  Google Scholar 

  • Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JF (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394

    Article  Google Scholar 

  • Moore GWK (2012) Surface pressure record of Tibetan Plateau warming since the 1870s. Q J Roy Meteor Soc 138(669):1999–2008. doi:10.1002/qj.1948

    Article  Google Scholar 

  • Niu GY, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res-Atmos 116(D12):1–19

  • Otkin JA, Greenwald TJ (2008) Comparison of WRF model-simulated and MODIS-derived cloud data. Mon Wea Rev. 136:1957–1970. doi:10.1175/2007MWR2293.1

    Article  Google Scholar 

  • Pei L, Moore N, Zhong S, Luo L, Hyndman DW, Heilman WE, Gao Z (2014) WRF model sensitivity to land surface model and Cumulus parameterization under short-term climate extremes over the Southern Great Plains of the United States. J. Climate 27:7703–7724

    Article  Google Scholar 

  • Randall DA et al (2007) Cilmate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Rasmussen R, Liu C, Ikeda K, Gochis D, Yates D et al (2011) High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: a process study of current and warmer climate. J Clim 24:3015–3048. doi:10.1175/2010JCLI3985.1

    Article  Google Scholar 

  • Rasmussen R, Ikeda K, Liu C, Gochis D, Clark M, Dai A, Gutmann E, Dudhia J, Chen F, Barlage M, Yates D, Zhang G (2014) Climate change impacts on the water balance of the Colorado headwaters: high-resolution regional climate model simulations. J Hydrometeorol 15(3):1091–1116. doi:10.1175/JHM-D-13-0118.1

    Article  Google Scholar 

  • Ruiter A (2012) Delta-change approach for CMIP5 GCMs, Trainee report, Royal Netherlands Meteorological Institute

  • Shen Y, Feng MN, Zhang HZ, Gao F (2010) Interpolation methods of China daily precipitation data. J Appl Meteorol Climatol 21(3):279–286

    Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, J. G. Powers (2005) A description of the advanced research WRF version 2Rep., DTIC Document

  • Solomon, S. (2007), Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC, Cambridge University Press

  • Solomon S (2007b) Climate change 2007-the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Su F, Duan X, Chen D, Hao Z, Cuo L (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26(10):3187–3208. doi:10.1175/jcli-d-12-00321.1

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/bams-d-11-00094.1

    Article  Google Scholar 

  • The national Meteorological Information Center (2012), Assessment Report of China monthly gridded surface air temperature version 2

  • Thorne PW, Vose RS (2010) Reanalyses suitable for characterizing long-term trends. Bull Amer Meteorol Soc 91:353–361

    Article  Google Scholar 

  • Tian L, Masson-Delmotte V, Stievenard M, Yao T, Jouzel J (2001) Tibetan plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J Geophys Res Atmos 106(D22):28081–28088

    Article  Google Scholar 

  • Van Pelt SC, Beersma JJ, Buishand TA, Van den Hurk BJJM, Kabat P (2012) Future changes in extreme precipitation in the Rhine basin based on global and regional climate model simulations. Hydrol Earth Syst Sci Discuss 9:6533–6568

    Article  Google Scholar 

  • Wang W, Seaman NL (1997) A comparison study of convective parameterization schemes in a mesoscale model. Mon Wea Rev 125:252–278. doi:10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2

    Article  Google Scholar 

  • Wang AH, Zeng XB (2012) Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J Geophys Res-Atmos. doi:10.1029/2011jd016553

    Google Scholar 

  • Wetterhall F, Bárdossy A, Chen D, Halldin S, Xu C-Y (2009) Statistical downscaling of daily precipitation over Sweden using GCM output. Theoret Appl Climatol 96:95–103. doi:10.1007/s00704-008-0038-0

    Article  Google Scholar 

  • Wu SH, Yin YH, Zheng D, Yang QY (2007) Climatic trends over the Tibetan Plateau during 1971–2000. J Geogr Sci 17(2):141–151. doi:10.1007/s11442-007-0141-7

    Article  Google Scholar 

  • Wu G, Duan A, Liu Y, Mao J, Ren R, Bao Q, He B, Liu B, Hu W (2014) Tibetan Plateau climate dynamics: recent research progress and outlook. Nat Sci Rev. doi:10.1093/nsr/nwu045

    Google Scholar 

  • Xu Z, Yang Z-L (2015) A new dynamical downscaling approach with GCM bias corrections and spectral nudging. J Geophys Res-Atmos. doi:10.1002/2014JD022958

    Google Scholar 

  • Xu J, Gao Y, Chen D, Xiao L, Ou T (2016) Evaluation of global climate models for downscaling applications centered over the Tibetan Plateau. Int J Climatol. doi:10.1002/joc.4731

  • Yang ZL, Niu GY (2003) The versatile integrator of surface and atmosphere processes—Part 1. Model description. Global Planet Change 38(1–2):175–189. doi:10.1016/s0921-8181(03)00028-6

    Article  Google Scholar 

  • Yao T et al (2013) A review of climate controls on delta O-18 in precipitation over the Tibetan Plateau: observations and simulations. Rev Geophys. doi:10.1002/rog.20023

    Google Scholar 

  • Zittis G, Hadjinicolaou P, Lelieveld J (2014) Comparison of WRF model physics parameterizations over the MENA-CORDEX domain. Am J Clim Change 3:490–511. doi:10.4236/ajcc.2014.35042

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ruby L. Leung for help with DDM. We appreciate the free access of the CMIP5 datasets, which are provided by the ESGF web portals (http://pcmdi9.llnl.gov/esgf-web-fe/) and the observation data provided by the National Climate Center, China Meteorological Administration (CMA). This work is jointly supported by the Ministry of Science and Technology of China (2013CB956004), and National Natural Science Foundation of China (91537211, 91537105, and 41322033). We thank the Supper-Computing Center of Chinese Academy of Science for computing the simulations. Deliang Chen was supported by the Swedish strategic research areas MERGE and BECC, and Swedish Research Council. Fei Chen would also like to acknowledge the support from the NCAR Water System program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Xiao, L., Chen, D. et al. Quantification of the relative role of land-surface processes and large-scale forcing in dynamic downscaling over the Tibetan Plateau. Clim Dyn 48, 1705–1721 (2017). https://doi.org/10.1007/s00382-016-3168-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3168-6

Keywords

Navigation