Skip to main content

Advertisement

Log in

Rainfall variability and trends of the past six decades (1950–2014) in the subtropical NW Argentine Andes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The eastern flanks of the Central Andes are characterized by deep convection, exposing them to hydrometeorological extreme events, often resulting in floods and a variety of mass movements. We assessed the spatiotemporal pattern of rainfall trends and the changes in the magnitude and frequency of extreme events (≥95th percentile) along an E-W traverse across the southern Central Andes using rain-gauge and high-resolution gridded datasets (CPC-uni and TRMM 3B42 V7). We generated different climate indices and made three key observations: (1) an increase of the annual rainfall has occurred at the transition between low (<0.5 km) and intermediate (0.5–3 km) elevations between 1950 and 2014. Also, rainfall increases during the wet season and, to a lesser degree, decreases during the dry season. Increasing trends in annual total amounts characterize the period 1979–2014 in the arid, high-elevation southern Andean Plateau, whereas trend reversals with decreasing annual total amounts were found at low elevations. (2) For all analyzed periods, we observed small or no changes in the median values of the rainfall-frequency distribution, but significant trends with intensification or attenuation in the 95th percentile. (3) In the southern Andean Plateau, extreme rainfall events exhibit trends towards increasing magnitude and, to a lesser degree, frequency during the wet season, at least since 1979. Our analysis revealed that low (<0.5 km), intermediate (0.5–3 km), and high-elevation (>3 km) areas respond differently to changing climate conditions, and the transition zone between low and intermediate elevations is characterized by the most significant changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AghaKouchak A, Nasrollahi N (2010) Semi-parametric and parametric inference of extreme value models for rainfall data. Water Resour Manag 24:1229–1249. doi:10.1007/s11269-009-9493-3

    Article  Google Scholar 

  • Antolini G, Auteri L, Pavan V et al (2015) A daily high-resolution gridded climatic data set for Emilia-Romagna, Italy, during 1961–2010. Int J Climatol. doi:10.1002/joc.4473

    Google Scholar 

  • Barros V, Castañeda ME, Doyle M (2000) Recent precipitation trends in Southern South America East of the Andes: an indication of climatic variability. South. Hemisph. Paleo- Neoclimates. pp 187–206

  • Barros V, Clarke R, Silva Dias P (2013) Climate Change in the La Plata Basin. doi:10.1038/474046a

  • Beniston M, Fox DG, Adhikary S et al (1996) Impacts of climate change on mountain regions. Second Assess. Rep. Intergov. Panel Clim. Chang. Cambridge University Press, pp 191–213

  • Berbery EH, Barros VR (2002) The hydrologic cycle of the La Plata basin in South America. J Hydrometeorol 3:630–645

    Article  Google Scholar 

  • Bianchi AR, Yañez CE (1992) Las precipitaciones en el Noroeste Argentino, Inst. Nac. Tecnol. Agropecu. Estac´ıon Exp

  • Boers N, Bookhagen B, Marwan N et al (2013) Complex networks identify spatial patterns of extreme rainfall events of the South American monsoon system. Geophys Res Lett 40:4386–4392. doi:10.1002/grl.50681

    Article  Google Scholar 

  • Boers N, Bookhagen B, Barbosa H et al (2014a) Prediction of extreme floods in the Central Andes by means of Complex Networks. Nat Commun. doi:10.1038/ncomms6199

    Google Scholar 

  • Boers N, Donner RV, Bookhagen B, Kurths J (2014b) Complex network analysis helps to identify impacts of the El Niño Southern oscillation on moisture divergence in South America. Clim Dyn. doi:10.1007/s00382-014-2265-7

    Google Scholar 

  • Boers N, Rheinwalt A, Bookhagen B et al (2014c) The South American rainfall dipole: a complex network analysis of extreme events. Geophys Res Lett 41:7397–7405. doi:10.1002/2014GL061829

    Article  Google Scholar 

  • Boers N, Bookhagen B, Marengo JA et al (2015a) Extreme rainfall of the South American monsoon system: a dataset comparison using complex networks. J Clim 28:1031–1056. doi:10.1175/JCLI-D-14-00340.1

    Article  Google Scholar 

  • Boers N, Bookhagen B, Marwan N, Kurths J (2015b) Spatiotemporal characteristics and synchronization of extreme rainfall in South America with focus on the Andes Mountain range. Clim Dyn. doi:10.1007/s00382-015-2601-6

    Google Scholar 

  • Bombardi RJ, Carvalho LMV, Jones C (2013) Simulating the influence of the South Atlantic dipole on the South Atlantic convergence zone during neutral ENSO. Theor Appl Climatol. doi:10.1007/s00704-013-1056-0

    Google Scholar 

  • Bookhagen B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Res 115:F03019. doi:10.1029/2009JF001426

    Article  Google Scholar 

  • Bookhagen B, Strecker MR (2008) Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophys Res Lett 35:L06403. doi:10.1029/2007GL032011

    Article  Google Scholar 

  • Bookhagen B, Strecker MR (2011) Modern Andean rainfall variation during ENSO cycles and its impact on the Amazon drainage basin. In: Hoorn C, Wesselingh FP (eds) Amaz Landsc. Species Evol. A look into past. Blackwell Publishing, Hoboken, pp 223–241

    Chapter  Google Scholar 

  • Bookhagen B, Strecker MR (2012) Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: examples from the southern Central Andes. Earth Planet Sci Lett 327–328:97–110. doi:10.1016/j.epsl.2012.02.005

    Article  Google Scholar 

  • Bremnes JB (2004) Probabilistic wind power forecasts using local quantile regression. Wind Energy 7:47–54. doi:10.1002/we.107

    Article  Google Scholar 

  • Cade B, Noon B (2003) A gentle introduction to quantile regression for ecologists. Front Ecol Environ 1:412–420

    Article  Google Scholar 

  • Caine N (1980) The rainfall intensity: duration control of shallow landslides and debris flows. Geogr Ann Ser A Phys Geogr 62:23–27. doi:10.2307/520449

    Article  Google Scholar 

  • Campetella CM, Vera CS (2002) The influence of the Andes mountains on the South American low-level flow. Geophys Res Lett 29:1826. doi:10.1029/2002GL015451

    Article  Google Scholar 

  • Carvalho LMV, Cavalcanti IFA (2016) The South American monsoon system (SAMS). In: Carvalho LMV, Jones C (eds) Monsoons and climate change. Springer, Berlin, pp 219–267

    Chapter  Google Scholar 

  • Carvalho LMV, Jones C (2016) The monsoons and climate change. Springer, Berlin

    Book  Google Scholar 

  • Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17:88–108

    Article  Google Scholar 

  • Carvalho LMV, Jones C, Silva AE et al (2011) The South American monsoon system and the 1970s climate transition. Int J Climatol 31:1248–1256. doi:10.1002/joc.2147

    Article  Google Scholar 

  • Carvalho LMV, Jones C, Posadas AND et al (2012) Precipitation characteristics of the South American monsoon system derived from multiple datasets. J Clim 25:4600–4620. doi:10.1175/JCLI-D-11-00335.1

    Article  Google Scholar 

  • Chen M, Shi W, Xie P et al (2008) Assessing objective techniques for gauge-based analyses of global daily precipitation. J Geophys Res Atmos 113:1–13. doi:10.1029/2007JD009132

    Google Scholar 

  • Chen S, Hong Y, Gourley JJ et al (2013) Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the Continental United States. Water Resour Res 49:8174–8186. doi:10.1002/2012WR012795

    Article  Google Scholar 

  • Cohen JCP, Silva Dias MAF, Nobre CA (1995) Environmental conditions associated with Amazonian squall lines: a case study. Mon Weather Rev 123:3163–3174

    Article  Google Scholar 

  • Condom T, Rau P, Espinoza JC (2011) Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998–2007. Hydrol Process 25:1924–1933. doi:10.1002/hyp.7949

    Article  Google Scholar 

  • da Silva A, de Carvalho L (2007) Large-scale index for South America Monsoon (LISAM). Atmos Sci Lett. doi:10.1002/asl

    Google Scholar 

  • Dai A, Fung IY, Del Genio AD (1997) Surface observed global land precipitation variations during 1900-88. J Clim 10:2943–2962

    Article  Google Scholar 

  • Daly C (2006) Guidelines for assessing the suitability of spatial climate data sets. Int J Climatol 26:707–721. doi:10.1002/joc.1322

    Article  Google Scholar 

  • Daly C, Neilson RP, Phillips DL (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158

    Article  Google Scholar 

  • de la Torre A, Pessano H, Hierro R et al (2015) The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains. Atmos Res 156:91–101. doi:10.1016/j.atmosres.2014.12.020

    Article  Google Scholar 

  • Skansi MM, Brunet M, Sigró J et al (2013) Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob Planet Change 100:295–307. doi:10.1016/j.gloplacha.2012.11.004

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Durkee JD, Mote TL, Shepherd JM (2009) The contribution of mesoscale convective complexes to rainfall across subtropical South America. J Clim 22:4590–4605. doi:10.1175/2009JCLI2858.1

    Article  Google Scholar 

  • Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nature 455:92–95. doi:10.1038/nature07234

    Article  Google Scholar 

  • Ensor LA, Robeson SM (2008) Statistical characteristics of daily precipitation: comparisons of gridded and point datasets. J Appl Meteorol Climatol 47:2468–2476. doi:10.1175/2008JAMC1757.1

    Article  Google Scholar 

  • Espinoza JC, Lengaigne M, Ronchail J, Janicot S (2012) Large-scale circulation patterns and related rainfall in the Amazon Basin: a neuronal networks approach. Clim Dyn 38:121–140. doi:10.1007/s00382-011-1010-8

    Article  Google Scholar 

  • Espinoza JC, Chavez S, Ronchail J et al (2015) Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour Res 6:446. doi:10.1002/2014WR016273

    Google Scholar 

  • Frei C, Schär C (2001) Detection probability of trends in rare events: theory and application to heavy precipitation in the Alpine region. J Clim 14:1568–1584

    Article  Google Scholar 

  • Friederichs P, Hense A (2007) Statistical downscaling of extreme precipitation events using censored quantile regression. Mon Weather Rev 135:2365–2378. doi:10.1175/MWR3403.1

    Article  Google Scholar 

  • Gandu A, Geisler J (1991) A primitive equations model study of the effect of topography on the summer circulation over tropical South America. J Atmos Sci 48:1822–1836

    Article  Google Scholar 

  • Gandu AW, Silva Dias PL (1998) Impact of tropical heat sources on the South American tropospheric upper circulation and subsidence. J Geophys Res 103:6001. doi:10.1029/97JD03114

    Article  Google Scholar 

  • Garreaud R (2000) Cold air incursions over subtropical South America: mean structure and dynamics. Mon Weather Rev 128:2544–2559

    Article  Google Scholar 

  • Garreaud R, Aceituno P (2001) Interannual rainfall variability over the South American Altiplano. J Clim 14:2779–2789

    Article  Google Scholar 

  • Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194:5–22. doi:10.1016/S0031-0182(03)00269-4

    Article  Google Scholar 

  • Garreaud RD, Molina A, Farias M (2010) Andean uplift, ocean cooling and Atacama hyperaridity: a climate modeling perspective. Earth Planet Sci Lett 292:39–50. doi:10.1016/j.epsl.2010.01.017

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. doi:10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • Giovannettone JP, Barros AP (2009) Probing regional orographic controls of precipitation and cloudiness in the central Andes using satellite data. J Hydrometeorol 10:167–182. doi:10.1175/2008JHM973.1

    Article  Google Scholar 

  • Gloor M, Brienen RJW, Galbraith D et al (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1729–1733. doi:10.1002/grl.50377

    Article  Google Scholar 

  • Gosset WS (1908) The Probable error of a mean. Biometrika 6:1–24

    Article  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D et al (2006) Increasing trend of extreme rain events over india in a warming environment. Science 314:1442–1445. doi:10.1126/science.1132027

    Article  Google Scholar 

  • Hahn J (1995) Cambridge University Press. Econ Theory 11:105–121

    Article  Google Scholar 

  • Halloy S (1982) Contribucíon al estudio de la zona de Huaca huasi, Cumbres Calchaquíes (Tucumán Argentina). Univ. Nac., Tucumán

  • Haylock M, Nicholls N (2000) Trends in extreme rainfall indices for an updated high quality data set for Australia, 1910–1998. Int J Climatol 20:1533–1541

    Article  Google Scholar 

  • Haylock MR, Peterson TC, Alves LM et al (2006) Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J Clim 19:1490–1512. doi:10.1175/JCLI3695.1

    Article  Google Scholar 

  • Heidinger H, Yarlequé C, Posadas A, Quiroz R (2012) TRMM rainfall correction over the Andean Plateau using wavelet multi-resolution analysis. Int J Remote Sens 33:4583–4602. doi:10.1080/01431161.2011.652315

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699. doi:10.1175/JCLI3990.1

    Article  Google Scholar 

  • Higgins RW, Shi W, Yarosh E, Joyce R (2000) Improved United States precipitation quality control system and analysis—Atlas No. 7

  • Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. Commun Stat Theory Methods 6:813–827. doi:10.1080/03610927708827533

    Article  Google Scholar 

  • Houston J (2006) The great Atacama flood of 2001 and its implications for Andean hydrology. Hydrol Process 20:591–610. doi:10.1002/hyp.5926

    Article  Google Scholar 

  • Hsu PC, Li T, Wang B (2011) Trends in global monsoon area and precipitation over the past 30 years. Geophys Res Lett 38:1–5. doi:10.1029/2011GL046893

    Article  Google Scholar 

  • Huber PJ (1981) Robust statistics. Wiley, New York

    Book  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ et al (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. doi:10.1175/JHM560.1

    Article  Google Scholar 

  • Insel N, Poulsen C, Ehlers T (2010) Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Clim Dyn 35:1477–1492. doi:10.1007/s00382-009-0637-1

    Article  Google Scholar 

  • Isotta FA, Frei C, Weilguni V et al (2014) The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int J Climatol 34:1657–1675. doi:10.1002/joc.3794

    Article  Google Scholar 

  • Jacques-Coper M, Garreaud RD (2015) Characterization of the 1970s climate shift in South America. Int J Climatol 35:2164–2179. doi:10.1002/joc.4120

    Article  Google Scholar 

  • Jones C, Carvalho LMV (2014) Sensitivity to Madden-Julian oscillation variations on heavy precipitation over the contiguous United States. Atmos Res 147–148:10–26. doi:10.1016/j.atmosres.2014.05.002

    Article  Google Scholar 

  • Jones C, Carvalho LMV, Liebmann B (2012) Forecast skill of the South American monsoon system. J Clim 25:1883–1889. doi:10.1175/JCLI-D-11-00586.1

    Article  Google Scholar 

  • Kendon E, Roberts N, Fowler H (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Change 4:1–7. doi:10.1038/NCLIMATE2258

    Article  Google Scholar 

  • Koenker R, Bassett G Jr (1978) Regression quantiles. Econometrica 46:33–50. doi:10.2307/1913643

    Article  Google Scholar 

  • Krishnamurthy CKB, Lall U, Kwon H-H (2009) Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J Clim 22:4737–4746. doi:10.1175/2009JCLI2896.1

    Article  Google Scholar 

  • Kummerow C, Barnes W, Kozu T et al (1998) The tropical rainfall measuring mission (TRMM) sensor package. J Atmos Ocean Technol 15:809–817

    Article  Google Scholar 

  • Kummerow C, Simpson J, Thiele O et al (2000) The status of the tropical rainfall measuring mission (TRMM) after two years in orbit. J Appl Meteorol 39:1965–1982

    Article  Google Scholar 

  • Lavado Casimiro WS, Labat D, Ronchail J et al (2013) Trends in rainfall and temperature in the Peruvian Amazon–Andes basin over the last 40 years (1965–2007). Hydrol Process 27:2944–2957. doi:10.1002/hyp.9418

    Google Scholar 

  • Liebmann B, Allured D (2005) Daily precipitation grids for South America. Bull Am Meteorol Soc 86:1567–1570. doi:10.1175/BAMS-86-11-1567

    Article  Google Scholar 

  • Longobardi A, Villani P (2009) Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. Int J Climatol. doi:10.1002/joc.2001

    Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Maddox RA, Chappell CF, Hoxit LR (1979) Synoptic and mesoscale aspects of flash flood events. Bull Am Meteorol Soc 60:115–123

    Article  Google Scholar 

  • Malik N, Bookhagen B, Marwan N, Kurths J (2011) Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Clim Dyn 39:971–987. doi:10.1007/s00382-011-1156-4

    Article  Google Scholar 

  • Malik N, Bookhagen B, Mucha PJ (2016) Spatiotemporal patterns and trends of Indian monsoonal rainfall extremes. Geophys Res Lett. doi:10.1002/2016GL067841

    Google Scholar 

  • Mantua N, Hare S (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44

    Article  Google Scholar 

  • Marengo JA (2004) Interdecadal variability and trends of rainfall across the Amazon basin. Theor Appl Climatol 78:79–96. doi:10.1007/s00704-004-0045-8

    Article  Google Scholar 

  • Marengo JA, Liebmann B, Grimm AM et al (2012) Recent developments on the South American monsoon system. Int J Climatol 32:1–21. doi:10.1002/joc.2254

    Article  Google Scholar 

  • Minetti JL, Vargas WM (1998) Trends and jumps in annual precipitation in South America, south of the 15°S. Atmosfera 11:205–211

    Google Scholar 

  • Minvielle M, Garreaud RD (2011) Projecting rainfall changes over the South American Altiplano. J Clim 24:4577–4583. doi:10.1175/JCLI-D-11-00051.1

    Article  Google Scholar 

  • Nerini D, Zulkafli Z, Wang L-P et al (2015) A comparative analysis of TRMM–rain gauge data merging techniques at the daily time scale for distributed rainfall–runoff modeling applications. J Hydrometeorol 16:2153–2168. doi:10.1175/JHM-D-14-0197.1

    Article  Google Scholar 

  • Papalexiou SM, Koutsoyiannis D (2013) Battle of extreme value distributions: a global survey on extreme daily rainfall. Water Resour Res 49:187–201. doi:10.1029/2012WR012557

    Article  Google Scholar 

  • Penalba OC, Robledo FA (2010) Spatial and temporal variability of the frequency of extreme daily rainfall regime in the La Plata Basin during the 20th century. Clim Change 98:531–550. doi:10.1007/s10584-009-9744-6

    Article  Google Scholar 

  • Pepin N, Bradley RS, Diaz HF et al (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430. doi:10.1038/nclimate2563

    Article  Google Scholar 

  • Rajczak J, Pall P, Schär C (2013) Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J Geophys Res Atmos 118:3610–3626. doi:10.1002/jgrd.502972013

    Article  Google Scholar 

  • Rao VB, Franchito SH, Santo CME, Gan MA (2015) An update on the rainfall characteristics of Brazil: seasonal variations and trends in 1979–2011. Int J Climatol. doi:10.1002/joc.4345

    Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R et al (2011) MERRA: nASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Robledo FA, Vera C, Penalba OC (2015) Influence of the large-scale climate variability on daily rainfall extremes over Argentina. Int J Climatol. doi:10.1002/joc.4359

    Google Scholar 

  • Rodda JC (2011) Guide to hydrological practices. Hydrol Sci J 56:196–197. doi:10.1080/02626667.2011.546602

    Article  Google Scholar 

  • Rohmeder W (1943) Observaciones meterológicas en la región encumbrada de las Sierras de Famatina y del Aconquija (republica Argentina). An Soc Cient Arg 136:97–124

    Google Scholar 

  • Rohrmann A, Strecker MR, Bookhagen B et al (2014) Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes. Earth Planet Sci Lett 407:187–195. doi:10.1016/j.epsl.2014.09.021

    Article  Google Scholar 

  • Romatschke U, Houze RA (2010) Extreme summer convection in South America. J Clim 23:3761–3791. doi:10.1175/2010JCLI3465.1

    Article  Google Scholar 

  • Romatschke U, Houze RA (2013) Characteristics of precipitating convective systems accounting for the summer rainfall of tropical and subtropical South America. J Hydrometeorol. doi:10.1175/JHM-D-12-060.1

    Google Scholar 

  • Romatschke U, Medina S, Houze RA (2010) Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J Clim 23:419–439. doi:10.1175/2009JCLI3140.1

    Article  Google Scholar 

  • Ruscica RC, Sörensson AA, Menéndez CG (2014) Hydrological links in Southeastern South America: soil moisture memory and coupling within a hot spot. Int J Climatol 3653:3641–3653. doi:10.1002/joc.3930

    Article  Google Scholar 

  • Rusticucci M, Penalba O (2000) Interdecadal changes in the precipitation seasonal cycle over Southern South America and their relationship with surface temperature. Clim Res 16:1–15. doi:10.3354/cr016001

    Article  Google Scholar 

  • Salio P, Nicolini M, Saulo AC (2002) Chaco low-level jet events characterization during the austral summer season. J Geophys Res Atmos 107:4816. doi:10.1029/2001JD001315

    Article  Google Scholar 

  • Sankarasubramanian A, Lall U (2003) Flood quantiles in a changing climate: seasonal forecasts and causal relations. Water Resour Res 39:1–12. doi:10.1029/2002WR001593

    Article  Google Scholar 

  • Seluchi ME, Marengo JA (2000) Tropical—midlatitude exchange of air masses during summer and winter in South America: climatic aspects. Int J Climatol 1190:1167–1190

    Article  Google Scholar 

  • Sen Roy S, Balling RC (2004) Trends in extreme daily precipitation indices in India. Int J Climatol 24:457–466. doi:10.1002/joc.995

    Article  Google Scholar 

  • Sen Z, Habib Z (2000) Spatial analysis of monthly precipitation in Turkey. Theor Appl Climatol 67:81–96. doi:10.1007/s007040070017

    Article  Google Scholar 

  • Seneviratne SI, Nicholls N, Easterling D, et al. (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, et al. (eds) Manag. Risks Extrem. Events Disasters to Adv. Clim. Chang. Adapt. A Spec. Rep. Work. Groups I II Intergov. Panel Clim. Chang. Cambridge, UK, and New York, NY, USA, pp 109–230

  • Serinaldi F, Kilsby CG (2014) Rainfall extremes: toward reconciliation after the battle of distributions. Water Resour Res 50:336–352. doi:10.1002/2013WR014211

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zwiers FW et al (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. doi:10.1002/jgrd.50188

    Article  Google Scholar 

  • Silva VBS, Kousky VE, Shi W, Higgins RW (2007) An improved gridded historical daily precipitation analysis for Brazil. J Hydrometeorol 8:847–861. doi:10.1175/JHM598.1

    Article  Google Scholar 

  • Tank AK, Zwiers FW, Zhang X (2009) Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, WCDMP-No. 72

  • Thibeault JM, Seth A, Garcia M (2010) Changing climate in the Bolivian Altiplano: CMIP3 projections for temperature and precipitation extremes. J Geophys Res Atmos 115:1–18. doi:10.1029/2009JD012718

    Article  Google Scholar 

  • Thibeault J, Seth A, Wang G (2012) Mechanisms of summertime precipitation variability in the bolivian altiplano: present and future. Int J Climatol 32:2033–2041. doi:10.1002/joc.2424

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217. doi:10.1175/BAMS-84-9-1205

    Article  Google Scholar 

  • Tucci CEM, Clarke RT (1998) Environmental issues in the la Plata basin. Int J Water Resour Dev 14:157–173. doi:10.1080/07900629849376

    Article  Google Scholar 

  • Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108. doi:10.1029/2008JD011021

    Article  Google Scholar 

  • Vera C, Higgins W, Amador J et al (2006) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000. doi:10.1175/JCLI3896.1

    Article  Google Scholar 

  • Vuille M, Keimig F (2004) Interannual variability of summertime convective cloudiness and precipitation in the Central Andes derived from ISCCP-B3 data. J Clim 17:3334–3348

    Article  Google Scholar 

  • Vuille M, Bradley RS, Keimig F (2000) Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. J Clim 13:2520–2535. doi:10.1175/1520-0442(2000)013<2520:CVITAO>2.0.CO;2

    Article  Google Scholar 

  • Vuille M, Franquist E, Garreaud R et al (2015) Impact of the global warming hiatus on Andean temperature. J Geophys Res Atmos 120:3745–3757. doi:10.1002/2015JD023126

    Article  Google Scholar 

  • White GF, Haas JE (1975) Assessment of research on natural hazard. MIT Press, Cambridge

    Google Scholar 

  • WMO (2008) Guide to hydrological practices, 6th edn. WMO, Geneva. doi:10.1080/02626667.2011.546602

    Google Scholar 

  • World Meteorological Organization (2011) Guide to climatological practices WMO-No. 100, WMO. WMO, Geneva

  • Wulf H, Bookhagen B, Scherler D (2012) Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya. Hydrol Earth Syst Sci 16:2193–2217. doi:10.5194/hess-16-2193-2012

    Article  Google Scholar 

  • Wulf H, Bookhagen B, Scherler D (2016) Differentiating between rain, snow, and glacier contributions to river discharge in the western Himalaya using remote-sensing data and distributed hydrological modeling. Adv Water Resour 88:152–169. doi:10.1016/j.advwatres.2015.12.004

    Article  Google Scholar 

  • Xie P, Chen M, Yang S et al (2007) A gauge-based analysis of daily precipitation over East Asia. J Hydrometeorol 8:607–626. doi:10.1175/JHM583.1

    Article  Google Scholar 

  • Xue X, Hong Y, Limaye AS et al (2013) Statistical and hydrological evaluation of TRMM-based multi-satellite precipitation analysis over the Wangchu Basin of Bhutan: are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J Hydrol 499:91–99. doi:10.1016/j.jhydrol.2013.06.042

    Article  Google Scholar 

  • Yu K, Lu Z, Stander J (2003) Quantile regression: applications and current research areas. J R Stat Soc Ser D Stat 52:331–350. doi:10.1111/1467-9884.00363

    Article  Google Scholar 

  • Yue S, Pilon P (2004) A comparison of the power of the t test, Mann-Kendall and bootstrap tests for trend detection. Hydrol Sci J 49:21–37. doi:10.1623/hysj.49.1.21.53996

    Article  Google Scholar 

  • Zhou J, Lau K-M (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040

    Article  Google Scholar 

  • Zulkafli Z, Buytaert W, Onof C et al (2014) A comparative performance analysis of TRMM 3B42 (TMPA) versions 6 and 7 for hydrological applications over Andean-Amazon river basins. J Hydrometeorol 15:581–592. doi:10.1175/JHM-D-13-094.1

    Article  Google Scholar 

Download references

Acknowledgments

This investigation was carried out with funds from the Leibniz Fund of the German Science foundation (DFG) to M.S. (STR373/19-1) and additional funds by the German Federal Ministry of Education and Research provided to the PROGRESS initiative on Climate Change, Georisk and Sustainability at Potsdam University to M.S. and B.B. The authors thank the Servicio Meteorológico Nacional (SMN), Argentina, and the Subsecretaría de Recursos Hídricos (BDHI), Argentina, for providing rain-gauge time series. The authors thank in particular M. García (SMN), D. Cielak (BDHI), Ricardo N. Alonso (UN Salta), Arturo Villanueva (UN Tucumán), and E. Marigliano (EVARSA, Argentina) for their valuable support during this study. The CPC-uni and TRMM 3B42 V7 data are available at https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-based-analysis-global-daily-precipitation and http://disc.sci.gsfc.nasa.gov/gesNews/trmm_v7_multisat_precip respectively. Furthermore, the authors thank the three anonymous reviewers for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Castino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25323 kb)

Appendix: Quantile regression

Appendix: Quantile regression

Quantile regression, which is often used in climate-related studies (e.g., Friederichs and Hense 2007; Sankarasubramanian and Lall 2003; Elsner et al. 2008; Bremnes 2004) is an extension of median regression based on estimating the value of the parameter vector β from the set of allowable vectors that minimizes the mean-loss function:

$${\text{L}}_{\uptau} \left( {\upbeta,{\text{y}}} \right) \, = \frac{1}{n}\mathop \sum \limits_{i = 1}^{n} p_{\uptau} \left\{ {{\text{ y}}_{\text{i}} {-} \,\upmu\left( {{\text{x}}_{\text{i}} ,\upbeta} \right) \, } \right\}$$
(1)

where yi (i = 1, …, n) are the response values, µ is the estimate of the τ quantile, and xi and β are the covariate vector (in our case the time) and parameter vector, respectively. The loss function is pτ (·), where:

$${\text{p}}_{\uptau} \left( {\text{z}} \right) = \left| {\text{z}} \right|\left\{ {\uptau \, \cdot{\text{ I}}\left( {{\text{z}} > 0} \right) + \left( {1 -\uptau} \right)\cdot{\text{ I}}\left( {{\text{z}} < 0} \right)} \right\}$$
(2)

and I(·) is the indicator function, which is 1 when the argument is true and 0, if not. The loss function is non-negative taking a minimum value of zero only when z = 0. Given a series of samples with µ constant (intercept-only model), the resulting value of β (a scalar in this case) that minimizes the total loss function occurs only when µ is equal to the τ quantile of the response. If the model fits well, a plot of fitted versus actual values will show that τ percentage of observed values should be less than the fitted values, with 1 − τ percentage of the observed values greater than that of the fitted values (Yu et al. 2003). The total loss function is an unbiased sample estimate of the expected value of pτ[Y − µ(x · β)], and the minimization over β is a consistent estimate of the minimization of this expected value. For the fit, we employ a linear model for the regression function of the form:

$$\upmu =\upbeta_{0} + \mathop \sum \limits_{i = 1}^{p}\upbeta_{\text{i}} \cdot{\text{ x}}_{\text{i}}$$
(3)

where xi is climate covariate i and there are p of them. Uncertainties associated with quantile regression coefficients at the 95 % confidence level were estimated applying boot-strapping techniques with 200 minimum numbers of iterations (Hahn 1995).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castino, F., Bookhagen, B. & Strecker, M.R. Rainfall variability and trends of the past six decades (1950–2014) in the subtropical NW Argentine Andes. Clim Dyn 48, 1049–1067 (2017). https://doi.org/10.1007/s00382-016-3127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3127-2

Keywords

Navigation