Skip to main content

Advertisement

Log in

Seminal role of stratiform clouds in large-scale aggregation of tropical rain in boreal summer monsoon intraseasonal oscillations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Modification of the vertical structure of non-adiabatic heating by significant abundance of the stratiform rain in the tropics has been known to influence the large-scale circulation. However, the role of the stratiform rain on the space–time evolution of the observed Boreal summer monsoon intraseasonal oscillations (MISO) has so far been ignored. In the present study, we unravel a feedback mechanism through which the stratiform component of the rain leads to aggregation (organization) of rain on the MISO scale, making it an indispensable component of the MISO evolution dynamics. Using TRMM 3A25 monthly mean data (between 1998 and 2013), the ratio between convective and stratiform rain (RCS) is shown to be strongly related to the total rainfall. Further, composites of rainfall and circulation anomalies corresponding to high (low) values of RCS over the Central India or over the Equatorial Indian Ocean show spatial structures remarkably similar to that associated with the MISOs. Analyzing lead–lag relationship between the convective rain, the stratiform rain and the large scale moisture convergence with respect to peak active (break) spells from daily modern era retrospective-analysis for research and applications data, we unravel that the initial isolated convective elements spawn the stratiform rain which in turn modifies the vertical distribution of heating and leads to stronger large scale moisture convergence thereby producing more convective elements and more stratiform rain ultimately leading to aggregation of rain on the MISO scale. Our finding indicates that large and persisting systematic biases in simulating the summer monsoon rainfall over the Asian monsoon region by climate models are likely to be related to the systematic biases in simulating the MISOs which in turn are related to the serious underestimation of stratiform rain in most climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abhilash S, Sahai AK, Pattnaik S et al (2014) Extended range prediction of active-break spells of Indian summer monsoon rainfall using an ensemble prediction system in NCEP Climate Forecast System. Int J Climatol 34:98–113

    Article  Google Scholar 

  • Adler R, Negri A (1988) A satellite infrared technique to estimate tropical convective and stratiform rainfall. J Appl Meteorol 27:30–51

    Article  Google Scholar 

  • Ajayamohan RS, Khouider B, Majda AJ (2013) Realistic initiation and dynamics of the Madde–Julian oscillation in a coarse resolution GCM. Geophys Res Lett. doi:10.1002/2013GL058187

    Google Scholar 

  • Ajayamohan RS, Khouider B, Majda AJ (2014) Simulation of monsoon intraseasonal oscillations in a coarse-resolution aquaplanet GCM. Geophys Res Lett. doi:10.1002/2014GL060662

    Google Scholar 

  • Ajayamohan RS, Khouider B, Majda AJ, Deng Q (2016) Role of stratiform heating on the organization of convection over the monsoon trough. Clim Dyn. doi:10.1007/s00382-016-3033-7

    Google Scholar 

  • Anthes RA (1977) A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon Weather Rev 105:270–286

    Article  Google Scholar 

  • Bhattacharya A, Chakraborty A, Venugopal V (2014) Variability of cloud liquid water and ice over South Asia from TMI estimates. Clim Dyn 42:2411–2421

    Article  Google Scholar 

  • Bony S, Emanuel KA (2005) On the role of moist processes in tropical intraseasonal variability: cloud-radiation and moisture-convection feedbacks. J Atmos Sci 62:2770–2789

    Article  Google Scholar 

  • Chattopadhyay R, Goswami BN, Sahai AK, Fraedrich K (2009) Role of stratiform rainfall in modifying the northward propagation of monsoon intraseasonal oscillation. J Geophys Res Atmos. doi:10.1029/2009JDO11869

    Google Scholar 

  • Chaturvedi RK, Joshi J, Jayaraman M, Bala G, Ravindranath NH (2012) Multi-model climate change projections for India under representative concentration pathways. Curr Sci 103:791–800

    Google Scholar 

  • Cheng C-P, Houze RA (1979) The distribution of convective and mesoscale precipitation in GATE radar echo patterns. Mon Weather Rev 107:1370–1381

    Article  Google Scholar 

  • Choudhury AD, Krishnan R (2011) Dynamical response of the south Asian monsoon trough to latent heating from stratiform and convective precipitation. J Atmos Sci 68:1347–1363

    Article  Google Scholar 

  • Churchill DD, Houze RA (1984) Mesoscale updraft magnitude and cloud-ice content deduced from the ice budget of the stratiform region of a tropical cloud cluster. J Atmos Sci 41:1717–1725

    Article  Google Scholar 

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630. doi:10.1175/JCLI3884.1

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Deng Q, Khouider B, Majda AJ (2015) The MJO in a coarse-resolution GCM with a stochastic multicloud parameterization. J Atmos Sci 72:55–74. doi:10.1175/JAS-D-14-0120.1

    Article  Google Scholar 

  • Deng Q, Khouider B, Majda AJ, Ajayamohan RS (2016) Effect of stratiform heating on the planetary-scale organization of tropical convection. J Atmos Sci 73:371–392. doi:10.1175/2011JAS3705.1

    Article  Google Scholar 

  • Gadgil S (2003) The Indian monsoon and its variability. Annu Rev Earth Planet Sci 31:429–467. doi:10.1146/annurev.earth.31.100901.141251

    Article  Google Scholar 

  • Goswami BN (2012) The south Asian Monsoon. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere–ocean climate system, 2nd edn. Springer-Praxis Books, Berlin, pp 21–72

    Google Scholar 

  • Goswami BN, Shukla J (1984) Quasi-periodic oscillations in a symmetric general circulation model. J Atmos Sci 41:20–37

    Article  Google Scholar 

  • Goswami BN, Wu G, Yasunari T (2006) The annual cycle, intraseasonal oscillations, and roadblock to seasonal predictability of the asian summer monsoon. J Clim 19:5078–5099. doi:10.1175/jcli3901.1

    Article  Google Scholar 

  • Hazra A, Chaudhari HS, Pokhrel S, Saha SK (2015a) Indian summer monsoon precipitating clouds: role of microphysical process rates. Clim Dyn. doi:10.1007/s00382-015-2717-8

    Google Scholar 

  • Hazra A, Chaudhari HS, Rao S, Goswami B, Dhakate A, Pokhrel S, Saha SK (2015b) Impact of revised cloud microphysical scheme in CFSv2 on the simulation of the Indian summer monsoon. Int J Climatol. doi:10.1002/joc.4320

    Google Scholar 

  • Houze RA (1977) Structure and dynamics of a tropical squall-line system. Mon Weather Rev 105:1540–1567

    Article  Google Scholar 

  • Houze RA (1982) Cloud clusters and large-scale vertical motions in the tropics. J Meteorol Soc Jpn Ser II 60:396–410

    Google Scholar 

  • Houze RA (1989) Observed structure of mesoscale convective systems and implications for large-scale heating. Q J R Meteorol Soc 115:425–461. doi:10.1002/qj.49711548702

    Article  Google Scholar 

  • Houze RA (1997) Stratiform precipitation in regions of convection: a meteorological paradox? Br Am Meteorol Soc 78:2179–2196

    Article  Google Scholar 

  • Houze RA (2014) Cloud dynamics, vol 104. Academic Press, London

    Google Scholar 

  • Huffman G, Bolvin D, Nelkin E, Wolff D, Adler R, Gu G, Hong Y, Bowman K, Stocker E (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  • Iguchi T, Kozu T, Meneghini R, Awaka J, Okamoto K (2000) Rain-profiling algorithm for the TRMM precipitation radar. J Appl Meteorol 39:2038–2052

    Article  Google Scholar 

  • Khouider B, Majda AJ, Katsoulakis MA (2003) Coarse-grained stochastic models for tropical convection and climate. Proc Natl Acad Sci USA 100:11941–11946

    Article  Google Scholar 

  • Khouider B, Biello J, Majda AJ et al (2010) A stochastic multicloud model for tropical convection. Commun Math Sci 8(1):187–216

    Article  Google Scholar 

  • Krishnamurti TN, Low-Nam S, Pasch R (1983) Cumulus parameterization and rainfall rates II. Mon Weather Rev 111:815–828

    Article  Google Scholar 

  • Kumar KK, Kamala K, Rajagopalan B, Hoerling MP, Eischeid JK, Patwardhan SK, Srinivasan G, Goswami BN, Nemani R (2011) The once and future pulse of Indian monsoonal climate. Clim Dyn 36:2159–2170. doi:10.1007/s00382-010-0974-0

    Article  Google Scholar 

  • Kumar S, Hazra A, Goswami BN (2014) Role of interaction between dynamics, thermodynamics and cloud microphysics on summer monsoon precipitating clouds over the Myanmar Coast and the Western Ghats. Clim Dyn 43:911–924

    Article  Google Scholar 

  • Kuo HL (1965) On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J Atmos Sci 22:40–63

    Article  Google Scholar 

  • Kuo HL (1974) Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J Atmos Sci 31:1232–1240

    Article  Google Scholar 

  • Lin J, Mapes B, Zhang M, Newman M (2004) Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J Atmos Sci 61:296–309

    Article  Google Scholar 

  • Liu C, Shige S, Takayabu Y, Zipser E (2015) Latent heating contribution from precipitation systems with different sizes, depths, and intensities in the tropics. J Clim 28:186–203

    Article  Google Scholar 

  • Majda AJ, Khouider B (2002) Stochastic and mesoscopic models for tropical convection. Proc Natl Acad Sci USA 99:1123–1128. doi:10.1073/pnas.032663199

    Article  Google Scholar 

  • Martin G, Milton S, Senior C, Brooks M, Ineson S, Reichler T, Kim J (2010) Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J Clim 23:5933–5957. doi:10.1175/2010jcli3541.1

    Article  Google Scholar 

  • Muller C, Bony S (2015) What favors convective aggregation and why? Geophys Res Lett 42:5626–5634

    Article  Google Scholar 

  • Peters K, Jakob C, Davies L, Khouider B, Majda AJ (2013) Stochastic behavior of tropical convection in observations and a multicloud model. J Atmos Sci 70:3556–3575

    Article  Google Scholar 

  • Pokhrel S, Sikka D (2013) Variability of the TRMM-PR total and convective and stratiform rain fractions over the Indian region during the summer monsoon. Clim Dyn 41:21–44

    Article  Google Scholar 

  • Rajeevan M, Gadgil S, Bhate J (2010) Active and break spells of the Indian summer monsoon. J Earth Syst Sci 119:229–247. doi:10.1007/s12040-010-0019-4

    Article  Google Scholar 

  • Ramesh KV, Goswami P (2014) Assessing reliability of regional climate projections: the case of Indian monsoon. Sci Rep 4:4071. doi:10.1038/srep04071

    Article  Google Scholar 

  • Raymond DJ, Fuchs Z (2009) Moisture modes and the Madden–Julian oscillation. J Clim 22:3031–3046. doi:10.1175/2008JCLI2739.1

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Todling R, Bacmeister J, Takacs L, Liu H-C, Gu W, Sienkiewicz M, Koster RD, Gelaro R, Stajner I, Nielsen JE (2008) The GEOS-5 data assimilation system—documentation of versions 5.0.1, 5.1.0, and 5.2.0. Technical report series on global modeling and data assimilation, 118

  • Rienecker MM, Suarez MJ, Gelaro R et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Romatschke U, Houze RA (2011) Characteristics of precipitating convective systems in the South Asian Monsoon. J Hydrometeorol 12:3–26

    Article  Google Scholar 

  • Sabeerali CT, Ramu Dandi A, Dhakate A, Salunke K, Mahapatra S, Rao SA (2013) Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs. J Geophys Res Atmos 118:4401–4420. doi:10.1002/jgrd.50403

    Article  Google Scholar 

  • Schumacher C, Houze RA (2003) The TRMM precipitation radar’s view of shallow, isolated rain. J Appl Meteorol 42:1519–1524

    Article  Google Scholar 

  • Schumacher C, Houze RA, Kraucunas I (2004) The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J Atmos Sci 61:1341–1358

    Article  Google Scholar 

  • Smull BF, Houze RA (1987) Rear inflow in squall lines with trailing stratiform precipitation. Mon Weather Rev 115:2869–2889

    Article  Google Scholar 

  • Sobel A, Maloney E (2012) An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J Atmos Sci 69:1691–1705. doi:10.1175/JAS-D-11-0118.1

    Article  Google Scholar 

  • Sobel A, Maloney E (2013) Moisture modes and the eastward propagation of the MJO. J Atmos Sci 70:187–192. doi:10.1175/JAS-D-12-0189.1

    Article  Google Scholar 

  • Song S, Mapes B (2012) Interpretations of systematic errors in the NCEP Climate Forecast System at lead times of 2, 4, 8, …, 256 days. J Adv Model Earth Syst. doi:10.1029/2011ms000094

    Google Scholar 

  • Song X, Yu R (2004) Underestimated tropical stratiform precipitation in the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3). Geophys Res Lett. doi:10.1029/2004gl021292

    Google Scholar 

  • Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744. doi:10.1007/s00382-012-1607-6

    Article  Google Scholar 

  • Trenberth KE (1999) Atmospheric moisture recycling: role of advection and local evaporation. J Clim 12:1368–1381

    Article  Google Scholar 

  • Waliser DE, Jin K, Kang I-S, Stern WF, Schubert SD, Wu MLC, Lau K-M, Lee M-I, Krishnamurthy V, Kitoh A, Meehl GA, Galin VY, Satyan V, Mandke SK, Wu G, Liu Y, Park C-K (2003) AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Clim Dyn 21:423–446. doi:10.1007/s00382-003-0337-1

    Article  Google Scholar 

  • Webster PJ, Magaña VO, Palmer TN et al (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103:14451. doi:10.1029/97JC02719

    Article  Google Scholar 

  • Wing AA, Emanuel KA (2014) Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J Adv Model Earth Syst 5:1–14

    Google Scholar 

  • Yanai M, Esbensen S, Chu J (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30:611–627

    Article  Google Scholar 

  • Yang S, Nesbitt S (2014) Statistical properties of precipitation as observed by the TRMM precipitation radar. Geophys Res Lett 41:5636–5643. doi:10.1002/2014gl060683

    Article  Google Scholar 

  • Zhao Q, Carr FH (1997) A prognostic cloud scheme for operational NWP models. Mon Weather Rev 125:1931–1953

    Article  Google Scholar 

Download references

Acknowledgments

We thank Tropical Rainfall Measurement Mission of NASA for providing 3A25 and 3B43 data. We also duly acknowledge Global Modeling and Assimilation Office and GES DISC of NASA for providing MERRA data. ERA-Interim data were obtained from http://apps.ecmwf.int/datasets. Authors thank Director of Indian Institute of Tropical Meteorology, Pune, India for his support. Indian Institute of Tropical Meteorology is an autonomous Institute under Ministry of earth Sciences, Government of India. BNG is thankful to the Ministry of Earth Sciences, New Delhi for the Pisharoty Chair Professorship and Indian Institute of Science Education and Research, Pune, India for the facilities. Last but not the least authors thank two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharth Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Arora, A., Chattopadhyay, R. et al. Seminal role of stratiform clouds in large-scale aggregation of tropical rain in boreal summer monsoon intraseasonal oscillations. Clim Dyn 48, 999–1015 (2017). https://doi.org/10.1007/s00382-016-3124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3124-5

Keywords

Navigation