Skip to main content

Advertisement

Log in

Sub-seasonal behaviour of Asian summer monsoon under a changing climate: assessments using CMIP5 models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north–south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a strong spatial and rainfall category dependency, sometimes offsetting the effect of the water vapour increase. Additionally, we found that the moisture convergence is mainly dominated by the climatological vertical motion acting on the humidity changes and the interplay between all these processes proves to play a pivotal role for regulating the intensities of various rainfall events in the two domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allan RP, Soden BJ (2007) Large discrepancy between observed and simulated precipitation trends in the ascending and descending branches of the tropical circulation. Geophys Res Lett 34:L18705. doi:10.1029/2007GL031460

    Article  Google Scholar 

  • Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481–1484

    Article  Google Scholar 

  • Annamalai H, Liu P (2005) Response of the Asian summer monsoon to changes in El Niño properties. Q J R Meteorol Soc 131:805–831

    Article  Google Scholar 

  • Annamalai H, Slingo JM (2001) Active/break cycles: diagnosis of the intraseasonal variability of the Asian summer monsoon. Clim Dyn 18:85–102

    Article  Google Scholar 

  • Annamalai H, Sperber KR (2005) Regional heat sources and the active and break phases of boreal summer intraseasonal (30–50 day) variability. J Atmos Sci 62:2726–2748

    Article  Google Scholar 

  • Annamalai H, Hamilton K, Sperber KR (2007) The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20:1071–1092

    Article  Google Scholar 

  • Ashfaq M, Shi Y, Tung WM, Trapp RJ, Gao X, Pal JS, Diffenbaugh NS (2009) Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys Res Lett 36:L01704. doi:10.1029/2008GL036500

    Article  Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28(23):4499–4502

    Article  Google Scholar 

  • Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J Clim 17(16):3141–3155

    Article  Google Scholar 

  • Ashrit RG, Kitoh A, Yukimoto S (2005) Transient response of ENSO-monsoon teleconnection in MRI-CGCM2.2 climate change simulations. J Meteorol Soc Jpn 83:273–291

    Article  Google Scholar 

  • Bhaskaran B, Mitchell JFB, Lavery JR, Lal M (1995) Climatic response of the Indian subcontinent to doubled CO2 concentration. Int J Climatol 15:873–892

    Article  Google Scholar 

  • Bony S, Bellon G, Klocke D, Sherwood S, Fermepin S, Denvil S (2013) Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat Geosci 6:447–451

    Article  Google Scholar 

  • Cherchi A, Alessandri A, Masina S, Navarra A (2011) Effects of increased CO2 levels on monsoons. Clim Dyn 37:83–101. doi:10.1007/s00382-010-0801-7

    Article  Google Scholar 

  • Chou C, Tu JY, Tan PH (2007) Asymmetry of tropical precipitation change under global warming. Geophys Res Lett 34:L17708. doi:10.1029/2007GL030327

    Article  Google Scholar 

  • Chou C, Neelin JD, Chen CA, Tu JY (2009) Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005

    Article  Google Scholar 

  • Chou C, Chen CA, Tan PH, Chen KT (2012) Mechanisms for global warming impacts on precipitation frequency and intensity. J Clim 25:3291–3306

    Article  Google Scholar 

  • Dash SK, Kulkarni MA, Mohanty UC, Prasad K (2009) Changes in the characteristics of rain events in India. J Geophys Res 114:D10109

    Article  Google Scholar 

  • Douville H, Royer JF, Polcher J, Cox P, Gedney N, Stephenson DB, Valdes PJ (2000) Impact of CO2 doubling on the Asian summer monsoon: robust versus model-dependent responses. J Meteorol Soc Jpn 78:421–439

    Google Scholar 

  • Douville H, Chauvin F, Planton S, Royer JF, Salas-Melia D, Tyteca S (2002) Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosols. Clim Dyn 20:45–68

    Article  Google Scholar 

  • Goswami BN, Ajayamohan RS (2001) Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J Clim 14:1180–1198

    Article  Google Scholar 

  • Goswami BN, Xavier PK (2005) Dynamics of ‘internal’ interannual variability of Indian summer monsoon in a GCM. J Geophys Res 110:D24104

    Article  Google Scholar 

  • Goswami BN, Wu G, Yasunari T (2006a) The annual cycle, intraseasonal oscillations and roadblock to seasonal predictability of the Asian summer monsoon. J Clim 19:5078–5099

    Article  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006b) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445

    Article  Google Scholar 

  • Hsu PC, Li T, Luo JJ, Murakami H, Kitoh A, Zhao M (2012) Increase of global monsoon area and precipitation under global warming: a robust signal? Geophys Res Lett 39:L0670. doi:10.1029/2012GL051037

    Google Scholar 

  • Hu ZZ, Latif M, Roeckner E, Bengtsson L (2000) Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geophys Res Lett 27:2681–2684

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multi-satellite precipitation analysis: quasi global, multi-year, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  • IPCC (2001) Third assessment report of the intergovernmental panel on climate change. www.ipcc.ch/ipccreports/ar4-wg1.htm

  • IPCC (2007) Fourth assessment report of the intergovernmental panel on climate change. www.ipcc.ch/ipccreports/ar4-wg1.htm

  • IPCC (2013) Fifth assessment report of the intergovernmental panel on climate change. www.ipcc.ch/ipccreports/ar4-wg1.htm

  • IPCC (2014) Fifth assessment report of the intergovernmental panel on climate change. www.ipcc.ch/ipccreports/ar4-wg1.htm

  • Jourdain NC, Gupta AS, Taschetto AS, Ummenhofer CC, Moise AF, Ashok K (2013) The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Clim Dyn. doi:10.1007/s00382-013-1676-1

    Google Scholar 

  • Kim D et al (2014) Process-oriented MJO simulation diagnostic: moisture sensitivity of simulated convection. J Clim 27:5379–5395

    Article  Google Scholar 

  • Kitoh A, Yukimoto S, Noda A, Motoi T (1997) Simulated changes in the Asian summer monsoon at times of increased atmospheric CO2. J Meteorol Soc Jpn 75:1019–1031

    Google Scholar 

  • Kitoh A, Endo H, Krishna Kumar K, Cavalcanti IFA, Goswami P, Zhou T (2013) Monsoons in a changing world: a regional perspective in a global context. J Geophys Res 118:3053–3065

    Google Scholar 

  • Krishnan R, Sabin TP, Ayantika DC, Kitoh A, Sugi M, Murakami H, Turner AG, Slingo JM, Rajendran K (2013) Will the South Asian monsoon overturning circulation stabilize any further? Clim Dyn. doi:10.1007/s00382-012-1317-0

    Google Scholar 

  • Lau KM, Wu HT (2007) Detecting trends in tropical rainfall characteristics, 1979–2003. Int J Climatol 27:979–988

    Article  Google Scholar 

  • Lee JY, Wang B (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119. doi:10.1007/s00382-012-1564-0

    Article  Google Scholar 

  • Ma J, Yu JY (2014) Paradox in the South Asian summer monsoon circulation change: lower tropospheric strengthening and upper tropospheric weakening. Geophys Res Lett. doi:10.1002/2014GL059891

    Google Scholar 

  • May W (2002) Simulated changes of the Indian summer monsoon under enhanced greenhouse gas conditions in a global time-slice experiment. Geophys Res Lett. doi:10.1029/2001GL013808

    Google Scholar 

  • May W (2004) Simulation of the variability and extremes of daily rainfall during the Indian summer monsoon for present and future times in a global time-slice experiment. Clim Dyn 22:183–204

    Article  Google Scholar 

  • May W (2011) The sensitivity of the Indian summer monsoon to a global warming of 2 C with respect to pre-industrial times. Clim Dyn 37:1843–1868. doi:10.1007/s00382-010-0942-8

    Article  Google Scholar 

  • Meehl GA, Washington WM (1993) South Asian summer monsoon variability in a model with doubled atmospheric carbon-dioxide concentration. Science 260:1101–1104

    Article  Google Scholar 

  • Meehl GA, Zwiers F, Evans J, Knutson T, Mearns L, Whetton P (2000) Trends in extreme weather and climate events: issues related to modelling extremes in projections of future climate change. Bull Am Meteorol Soc 81:427–436

    Article  Google Scholar 

  • Menon A, Levermann A, Schewe J, Lehmann J, Frieler K (2013) Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst Dyn 4:287–300. doi:10.5194/esd-4-287-2013

    Article  Google Scholar 

  • Moberg A et al (2006) Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J Geophys Res. doi:10.1029/2006JD007103

    Google Scholar 

  • Ogata T, Ueda H, Inoue T, Hayasaki M, Yoshida A, Watanabe S, Kira M, Ooshiro M, Kumai A (2014) Projected future changes in the Asian monsoon: a comparison of CMIP3 and CMIP5 model results. J Meteorol Soc Jpn 92:207–225

    Article  Google Scholar 

  • Paula JB, Kummerow CD (2014) An assessment of atmospheric water budget components over tropical oceans. J Clim 27:2054–2071

    Article  Google Scholar 

  • Pillai PA, Annamalai H (2012) Moist dynamics of severe monsoons over South Asia: role of the tropical SST. J Atmos Sci 69:97–115

    Article  Google Scholar 

  • Prasanna V, Annamalai H (2012) Moist dynamics of extended monsoon breaks over South Asia. J Clim 25:3810–3831

    Article  Google Scholar 

  • Priya P, Mujumdar M, Sabin TP, Terray P, Krishnan R (2015) Impacts of Indo-Pacific sea surface temperature anomalies on the summer monsoon circulation and heavy precipitation over northwest India–Pakistan region during 2010. J Clim 28:3714–3730. doi:10.1175/JCLI-D-14-00595.1

    Article  Google Scholar 

  • Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys Res Lett 35:L18707. doi:10.1029/2008GL035143

    Article  Google Scholar 

  • Rasmussen KL, Hill AJ, Toma VE, Zuluaga MD, Webster PJ, Houze RA Jr (2015) Multiscale analysis of three consecutive years of anomalous flooding in Pakistan. Q J R Meteorol Soc 141:1259–1276. doi:10.1002/qj.2433

    Article  Google Scholar 

  • Sabeerali CT, Rao SA, Dhakate AR, Salunke K, Goswami BN (2015) Why ensemble mean projection of south Asian monsoon rainfall by CMIP5 models is not reliable? Clim Dyn 45:161–174

    Article  Google Scholar 

  • Saha A, Ghosh S, Sahana AS, Rao EP (2014) Failure of CMIP5 climate models in simulating post-1950 decreasing trend of Indian monsoon. Geophys Res Lett 41:7323–7330. doi:10.1002/2014GL061573

    Article  Google Scholar 

  • Sandeep S, Ajaya Mohan RS (2015) Poleward shift in Indian summer monsoon low level Jetstream under global warming. Clim Dyn 45:337–351. doi:10.1007/s00382-014-2261-y

    Article  Google Scholar 

  • Sharmila S, Joseph S, Sahai AK, Abhilash S, Chattopadhyay R (2015) Future projection of Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Glob Planet Change 124:62–78

    Article  Google Scholar 

  • Sooraj KP, Terray P, Mujumdar M (2015) Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Clim Dyn 45:233–252. doi:10.1007/s00382-014-2257-7

    Article  Google Scholar 

  • Sperber KR, Slingo JM, Annamalai H (2000) Predictability and the relationship between subseasonal and interannual variability during the Asian summer monsoons. Q J R Meteorol Soc 126:2545–2574

    Article  Google Scholar 

  • Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner AG, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744. doi:10.1007/s00382-012-1607-6

    Article  Google Scholar 

  • Srivastava AK, DelSole T (2014) Robust forced response in South Asian summer monsoon in a future climate. J Clim 27:7849–7860

    Article  Google Scholar 

  • Stowasser M, Annamalai H, Hafner J (2009) Response of the South Asian summer monsoon to global warming: mean and synoptic systems. J Clim 22:1014–1036

    Article  Google Scholar 

  • Tanaka HL, Ishizaki N, Nohara D (2005) Intercomparison of the intensities and trends of Hadley, Walker and monsoon circulations in the global warming projections. Sci Online Lett Atmos 1:77–80. doi:10.2151/sola.2005-021

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Trenberth KE (2012) Framing the way to relate climate extremes to climate change. Clim Change 115(2):283–290. doi:10.1007/s10584-012-0441-5

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217. doi:10.1175/BAMS-84-9-1205

    Article  Google Scholar 

  • Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change. doi:10.1038/NCLIMATE1495

    Google Scholar 

  • Turner AG, Slingo JM (2009) Uncertainties in future projections of extreme precipitation in the Indian monsoon region. Atmos Sci Lett 10:152–158. doi:10.1002/asl.223

    Article  Google Scholar 

  • Turner AG, Inness PM, Slingo JM (2007) The effect of doubled CO2 and model basic state biases on the monsoon-ENSO system. I: mean response and interannual variability. QJR Meteorol Soc 133:1143–1157

    Article  Google Scholar 

  • Ueda H, Iwai A, Kuwako K, Hori ME (2006) Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs. Geophys Res Lett 33:L06703. doi:10.1029/2005GL025336

    Article  Google Scholar 

  • Ummenhofer CC, Sen Gupta A, Li Y, Taschetto AS, England MH (2011) Multi-decadal modulation of the El Nino-Indian monsoon relationship by Indian Ocean variability. Environ Res Lett 6:034006

    Article  Google Scholar 

  • Von Storch H, Zwiers FW (2001) Statistical analysis in climate research. Cambridge Univesity press, Cambridge

    Google Scholar 

  • Webster PJ, Magaña VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103:14451–14510

    Article  Google Scholar 

  • Xavier PK (2012) Intraseasonal convective moistening in CMIP3 models. J Clim 25:2569–2577

    Article  Google Scholar 

  • Xavier P, Rahmat R, Cheong WK, Wallace E (2014) Influence of Madden-Julian oscillation on South East Asia rainfall extremes: observations and predictability. Geophys Res Lett 41:4406–4412. doi:10.1002/2014GL060241

    Article  Google Scholar 

  • Yukimoto S, Noda A, Uchiyama T, Kusunoki S, Kitoh A (2006) Climate changes of the twentieth through twenty-first centuries simulated by the MRI-CGCM2.3. Pap Meteorol Geophys 56:9–24

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Rajeevan M, Director, Indian Institute of Tropical Meteorology, India for all the support for this research study. We are also thankful to Drs Krishnan R and Mujumdar M for their valuable support in carrying out this research work. Pascal Terray is funded by Institut de Recherche pour le Développement (IRD, France) and this work was done while Pascal Terray was a visiting scientist at IITM. P. Xavier is supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). We acknowledge the climate modelling groups, the Program for Climate Model Diagnosis and Intercomparison, and the World Climate Research Programme’s working Group on coupled modelling, for making available the “CMIP5” multi-model data sets. We also thank the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Sooraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sooraj, K.P., Terray, P. & Xavier, P. Sub-seasonal behaviour of Asian summer monsoon under a changing climate: assessments using CMIP5 models. Clim Dyn 46, 4003–4025 (2016). https://doi.org/10.1007/s00382-015-2817-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2817-5

Keywords

Navigation