Skip to main content
Log in

Two flavors of the Indian Ocean Dipole

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Indian Ocean Dipole (IOD) is known as a climate mode in the tropical Indian Ocean accompanied by negative (positive) sea surface temperature (SST) anomalies over the eastern (western) pole during its positive phase. However, the western pole of the IOD is not always covered totally by positive SST anomalies. For this reason, the IOD is further classified into two types in this study based on SST anomalies in the western pole. The first type (hereafter “canonical IOD”) is associated with negative (positive) SST anomalies in the eastern (central to western) tropical Indian Ocean. The second type (hereafter “IOD Modoki”), on the other hand, is associated with negative SST anomalies in the eastern and western tropical Indian Ocean and positive SST anomalies in the central tropical Indian Ocean. Based on composite analyses, it is found that easterly wind anomalies cover the whole equatorial Indian Ocean in the canonical IOD, and as a result, positive rainfall anomalies are observed over East Africa. Also, due to the basin-wide easterly wind anomalies, the canonical IOD is accompanied by strong sea surface height (SSH) anomalies. In contrast, zonal wind anomalies converge in the central tropical Indian Ocean in the IOD Modoki, and no significant precipitation anomalies are found over East Africa. Also, only weak SSH anomalies are seen, because equatorial downwelling anomalies induced by westerly wind anomalies in the west are counteracted by equatorial upwelling anomalies caused by easterly wind anomalies in the east.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adler RF et al (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Annamalai H, Xie SP, McCreary JP, Murtugudde R (2005) Impact of Indian Ocean sea surface temperature on developing El Niño. J Clim 18:302–319

    Article  Google Scholar 

  • Ashok K, Yamagata T (2009) The El Niño with a difference. Nature 461:481–484

    Article  Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2003) A look at the relationship between the ENSO and the Indian Ocean Dipole. J Meteorol Soc Jpn 81:41–56

    Article  Google Scholar 

  • Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and the Indian Ocean Dipole on the Indian summer monsoon. J Clim 17:3141–3155

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JCOO3798

    Article  Google Scholar 

  • Behera S, Yamagata T (2010) Imprint of the El Niño Modoki on decadal sea level changes. Geophys Res Lett 37:L23702. doi:10.1029/2010GL045936

    Article  Google Scholar 

  • Behera SK, Luo JJ, Masson S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2005) Paramount impact of the Indian Ocean Dipole on the East African short rains: a CGCM study. J Clim 18:4514–4530

    Article  Google Scholar 

  • Behera S, Ratnam J, Masumoto Y, Yamagata T (2013) Origin of extreme summers in Europe: the Indo-Pacific connection. Clim Dyn 41:663–676

    Article  Google Scholar 

  • Behringer D, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. Preprint, Eighth symposium on integrated observing and assimilation system for atmosphere, ocean and land surface, Seattle, WA, Am Meteorol Soc, 2.3. http://origin.cpc.ncep.noaa.gov/products/people/yxue/pub/13.pdf

  • Cai W, Cowan T, Raupach M (2009) Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophys Res Lett 36:L19710. doi:10.1029/2009GL039902

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136:2999–3017

    Article  Google Scholar 

  • Du Y, Cai W, Wu Y (2013) A new type of the Indian Ocean Dipole since the mid-1970s. J Clim 26:959–972

    Article  Google Scholar 

  • Guan Z, Yamagata T (2003) The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys Res Lett. doi:10.1029/2002GL016831

    Google Scholar 

  • Hashizume M, Terao T, Minakawa N (2009) The Indian Ocean Dipole and malaria risk in the highlands of western Kenya. Proc Nat Acad Sci 106:1857–1962

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kim ST, Yu JY (2012) The two types of ENSO in CMIP5 models. Geophys Res Lett 39:L11704. doi:10.1029/2012GL052006

    Google Scholar 

  • Kim JS, Kim KY, Yeh SW (2012) Statistical evidence for the natural variation of the central Pacific El Niño. J Geophys Res 117:C06014. doi:10.1029/2012JC008003

    Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277

    Google Scholar 

  • Luo JJ, Masson S, Behera S, Yamagata T (2007) Experimental forecasts of Indian Ocean Dipole using a coupled OAGCM. J Clim 20:2178–2190

    Article  Google Scholar 

  • Luo JJ, Behera S, Masumoto Y, Sakuma H, Yamagata T (2008) Successful prediction of the consecutive IOD in 2006 and 2007. Geophys Res Lett 35:L14S02. doi:10.1029/2007GL032793

  • Luo JJ, Zhang R, Behera SK, Masumoto Y, Jin FF, Lukas R, Yamagata T (2010) Interaction between El Nino and extreme Indian Ocean Dipole. J Clim 23:726–742

    Article  Google Scholar 

  • McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. doi:10.1029/2011GL048275

    Article  Google Scholar 

  • Newman M, Shin SI, Alexander MA (2011) Natural variation in ENSO flavors. Geophys Res Lett 38:L14705. doi:10.1029/2011GL047658

    Article  Google Scholar 

  • Pourasghar F, Tozuka T, Jahanbakhsh S, Sari Sarraf B, Ghaemi H, Yamagata T (2012) The interannual precipitation variability in the southern part of Iran as linked to large-scale climate modes. Clim Dyn 39:2329–2341

    Article  Google Scholar 

  • Rao SA, Yamagata T (2004) Abrupt termination of Indian Ocean Dipole events in response to intraseasonal disturbances. Geophys Res Lett 31:L19306. doi:10.1029/2004GL020842

    Article  Google Scholar 

  • Rao SA, Behera SK, Masumoto Y, Yamagata T (2002) Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep Sea Res II 49:1549–1572

    Article  Google Scholar 

  • Rao SA, Luo JJ, Behera SK, Yamagata T (2009) Generation and termination of Indian Ocean Dipole events in 2003, 2006 and 2007. Clim Dyn 33:751–767

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analysis of SST, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res. doi:10.1029/2002JD002670

    Google Scholar 

  • Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean Dipole events on global climate. Clim Res 25:151–169

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Ummenhofer CC, England MH, McIntosh PC, Meyers GA, Pook MJ, Risbey JS, Sen Gupta A, Taschetto AS (2009) What causes southeast Australia’s worst droughts? Geophys Res Lett 36:L04706. doi:10.1029/2008GL036801

    Article  Google Scholar 

  • Uppala SM, et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131 Part B:2961–3012

  • Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129

    Article  Google Scholar 

  • Xie PP, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  • Yeh SW, Kirtman BP, Kug JS, Park W, Latif M (2011) Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophys Res Lett 38:L02704. doi:10.1029/2010GL045886

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their constructive comments. The present research is supported by the Japan Science and Technology Agency, the Japan Agency for Medical Research and Development, and the Japan International Cooperation Agency through Science and Technology Research Partnership for Sustainable Development (SATREPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Endo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, S., Tozuka, T. Two flavors of the Indian Ocean Dipole. Clim Dyn 46, 3371–3385 (2016). https://doi.org/10.1007/s00382-015-2773-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2773-0

Keywords

Navigation