Skip to main content

Advertisement

Log in

Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Systematic differences in glacier mass balance response to climate warming are apparent in the Tianshan Mountains, which are primarily caused by different climatic regimes and glacier hypsography. Combined mass balance data of nine monitored glaciers in the Tianshan Mountains shows that most glaciers accelerated their mass losing rate since 1970s (averaged from −24.6 mm w.e. a−1 in 1957–1970 to −444.6 mm w.e. a−1 in 1971–2009), but also exhibiting discrepancy and consistency during the second half of the twentieth century. To see their climatic–mass balance relationships, we employ a simple temperature index mass balance model on five well monitored glaciers in Tianshan. The model is calibrated by the observed annual, summer and winter mass balance data over the period of 1957–1980 and validated over 1981–2002. A comparison of modeled and measured annual mass balance yields an overall standard deviation of 0.465 m w.e. during the period of model runs. The calibrated mass balance model is also used to perform sensitivity experiments, which indicates the significant differences of individual glaciers in response to climate changes. This study, for the first time, tests a temperature index mass balance model on the selected observed glaciers in the Tianshan Mountains. Although there exists considerable uncertainties, we propose its potential possibility of improvement and applicability for regional glacier mass balance reconstructions and future predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aizen VB, Loktionova H (1994) The existing conditions of the Southeastern Tibet glacier [A]. In: Xie Z, Kotlyakov VM (eds) Glaciers and environment in the Qinghai-Xizang (Tibet) Plateau (I)—The Gongga Mountain. Science Press, Beijing, pp 1–28

    Google Scholar 

  • Aizen VB, Aizen EM, Melack JM (1996) Precipitation, melt and runoff in the northern Tien Shan. J Hydrol 186(1–4):229–251. doi:10.1016/S0022-1694(96)03022-3

    Article  Google Scholar 

  • Aizen VB, Aizen EM, Melack JM, Dozier J (1997) Climatic and hydrologic changes in the Tien Shan, Central Asia. J Clim 10(6):1393–1404. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Aizen VB, Kuzmichenok VA, Surazakov AB, Aizen EM (2006) Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data. Ann Glaciol 43:202–212. doi:10.3189/172756406781812465

    Article  Google Scholar 

  • Aizen VB, Aizen EM, Kuzmichonok VA (2007a) Glaciers and hydrological changes in the Tien Shan: simulation and prediction. Environ Res Lett 2:1748–9326. doi:10.1088/1748-9326/2/4/045019

    Article  Google Scholar 

  • Aizen VB, Kuzmichenok VA, Surazakov AB, Aizen EM (2007b) Glacier changes in the Tien Shan as determined from topographic and remotely sensed data. Global Planet Change 56(3):328–340. doi:10.1016/j.gloplacha.2006.07.016

    Article  Google Scholar 

  • Anderson B, Mackintosh A (2012) Controls on mass balance sensitivity of maritime glaciers in the Southern Alps, New Zealand: the role of debris cover. J Geophys Res 117:F01003. doi:10.1029/2011JF002064

    Google Scholar 

  • Benn DI, Lehmkuhl F (2000) Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quat Int 65(6):15–29. doi:10.1016/S1040-6182(99)00034-8

    Article  Google Scholar 

  • Bolch T (2007) Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Global Planet Change 56(1):1–12. doi:10.1016/j.gloplacha.2006.07.009

    Article  Google Scholar 

  • Braithwaite RJ (2002) Glacier mass balance: the first 50 years of international monitoring. Prog Phys Geogr 26(1):76–95. doi:10.1191/0309133302pp326ra

    Article  Google Scholar 

  • Braithwaite RJ, Raper SCB (2002) Glaciers and their contribution to sea level change. Phys Chem Earth 27(32–34):1445–1454. doi:10.1016/S1474-7065(02)00089-X

    Article  Google Scholar 

  • Braithwaite RJ, Zhang Y (1999) Modeling changes in glacier mass balance that may occur as a result of climate changes. Geogr Ann 81(4):489–496. doi:10.1111/1468-0459.00078

    Article  Google Scholar 

  • Braithwaite RJ, Zhang Y (2000) Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model. J Glaciol 46(152):7–14. doi:10.3189/172756500781833511

    Article  Google Scholar 

  • Cao MS (1998) Detection of abrupt changes in glacier mass balance in the Tien Shan Mountains. J Glaciol 44(147):352–358

    Google Scholar 

  • Cogley JG (2005) Mass and energy balance of glaciers and ice sheets. In: Anderson MG (ed) Encyclopedia of hydrological sciences. Wiley, Hoboken, pp 2555–2573

    Google Scholar 

  • Dyurgerov MB, Meier MF (1997) Year-to-year fluctuations of global mass balance of small glaciers and their contribution to sea-level changes. Arct Alp Res 29(4):392–402

    Article  Google Scholar 

  • Dyurgerov MB, Kunakhovitch MG, Mikhalenko VN, Sokalskaya AM, Kuzmichenok VA (1992) Can the mass balance of the entire glacier area of the Tien-Shan be estimated. Ann Glaciol 16:173–179

    Google Scholar 

  • Dyurgerov M, Mikhalenko V, Kunakhovitch M, Ushnurtsev S, Liu C, Xie Z (1994) On the cause of glacier mass balance variations in the Tian Shan Mountains. GeoJournal 33(2–3):311–317. doi:10.1007/BF00812879

    Article  Google Scholar 

  • Elsberg DH, Harrison WD, Echelmeyer KA, Krimmel RM (2001) Quantifying the effects of climate and surface change on glacier mass balance. J Glaciol 47(159):649–658. doi:10.3189/172756501781831783

    Article  Google Scholar 

  • Gao X, Ye BS, Zhang SQ, Qiao CJ, Zhang XW (2010) Glacier runoff variation and its influence on river runoff during 1961–2006 in the Tarim River Basin, China. Sci China Earth Sci 53(6):880–891. doi:10.1007/s11430-010-0073-4

    Article  Google Scholar 

  • Hagg WJ, Braun LN, Uvarov VN, Makarevich KG (2004) A comparison of three methods of mass-balance determination in the Tuyuksu glacier region, Tien Shan, Central Asia. J Glaciol 50(171):505–510. doi:10.3189/172756504781829783

    Article  Google Scholar 

  • Hagg W, Mayer C, Lambrecht A, Helm A (2008) Sub-debris melt rates on southern Inylchek Glacier, central Tian Shan. Geografiska Annaler Series a-Phys Geogr 90(1):55–63. doi:10.1111/j.1468-0459.2008.00333.x

    Article  Google Scholar 

  • Han H, Ding Y, Liu S (2005) Estimation of ice ablation under a debris cover. J Glaciol Geocryol 27(3):329–336 (in Chinese with English abstract)

    Google Scholar 

  • Han H, Wang J, Wei J, Liu S (2010) Backwasting rate on debris-covered Koxkar glacier, Tuomuer mountain, China. J Glaciol 56(196):287–296. doi:10.3189/002214310791968430

    Article  Google Scholar 

  • Hock R (1999) A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. J Glaciol 45(149):101–111

    Google Scholar 

  • Hock R (2003) Temperature index melt modelling in mountain areas. J Hydrol 282(1–4):104–115. doi:10.1016/S0022-1694(03)00257-9

    Article  Google Scholar 

  • Hock R (2005) Glacier melt a review of processes and their modelling. Prog Phys Geogr 29(3):362–391

    Article  Google Scholar 

  • Hock R, Radić V, De Woul M (2007) Climate sensitivity of Storglaciaren, Sweden: an intercomparison of mass-balance models using ERA-40 re-analysis and regional climate model data. Ann Glaciol 46(1):342–348. doi:10.3189/172756407782871503

    Article  Google Scholar 

  • Huss M, Bauder A, Funk M, Hock R (2008) Determination of the seasonal mass balance of four Alpine glaciers since 1865. J Geophys Res Earth Surf. doi:10.1029/2007jf000803

    Google Scholar 

  • Huss M, Hock R, Bauder A, Funk M (2012) Conventional versus reference-surface mass balance. J Glaciol 58(208):278–286. doi:10.3189/2012JoG11J216

    Article  Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385. doi:10.1126/science.1183188

    Article  Google Scholar 

  • Johannesson T, Raymond C, Waddington E (1989) Time-Scale for adjustment of glaciers to changes in mass balance. J Glaciol 35:355–369

    Google Scholar 

  • Kargel JS, Bush ABG, Cogley JG, Leonard GJ, Raup BH, Smiraglia C, Pecci M, Ranzi R (2013) a world of changing glaciers: summary and climatic context, chapter 33. In: Kargel JS, Leonard GJ, Bishop MP, Kääb A, Raup BH (eds) Global land ice measurements in space. Springer, Berlin

    Google Scholar 

  • Kaser G, Cogley JG, Dyurgerov MB, Meier MF, Ohmura A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys Res Lett. doi:10.1029/2006GL027511

    Google Scholar 

  • Kotlyakov V (1980) Problems and results of studies of mountain glaciers in the Soviet Union. IAHS Publication 126:129–136

    Google Scholar 

  • Liu S, Ding Y, Wang N, Xie Z (1998) Mass balance sensitivity to climate change of the Glacier No. 1 at the Urumqi River Head, Tianshan Mts. J Glaciol Geocryol 20(1):9–13

    Google Scholar 

  • Liu Q, Liu S, Zhang Y, Wang X, Zhang Y, Guo W, Xu J (2010) Recent shrinkage and hydrological response of Hailuogou glacier, a monsoon temperate glacier on the east slope of Mount Gongga, China. J Glaciol 56(196):215–224. doi:10.3189/002214310791968520

    Article  Google Scholar 

  • Liu Q, Mayer C, Liu S (2015) Distribution and interannual variability of supraglacial lakes on debris-covered glaciers in the Khan Tengri-Tumor Mountains, Central Asia. Environ Res Lett 10:014014. doi:10.1088/1748-9326/10/1/014014

    Article  Google Scholar 

  • Machguth H, Paul F, Kotlarski S, Hoelzle M (2009) Calculating distributed glacier mass balance for the Swiss Alps from regional climate model output: a methodical description and interpretation of the results. J Geophys Res Atmos. doi:10.1029/2009jd011775

    Google Scholar 

  • Narama C, Kääb A, Duishonakunov M, Abdrakhmatov K (2010) Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~1970), Landsat (~2000), and ALOS (~2007) satellite data. Global Planet Change 71(1–2):42–54. doi:10.1016/j.gloplacha.2009.08.002

    Article  Google Scholar 

  • Oerlemans J, Fortuin JPF (1992) Sensitivity of glaciers and small ice caps to greenhouse warming. Science 258(5079):115–117. doi:10.1126/science.258.5079.115

    Article  Google Scholar 

  • Oerlemans J, Reichert BK (2000) Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic. J Glaciol 46(152):1–6. doi:10.3189/172756500781833269

    Article  Google Scholar 

  • Oerlemans J, Anderson B, Hubbard A, Huybrechts P, Johannesson T, Knap WH, Schmeits M, Stroeven AP, van de Wal RSW, Wallinga J, Zuo Z (1998) Modelling the response of glaciers to climate warming. Clim Dyn 14(4):267–274. doi:10.1007/s003820050222

    Article  Google Scholar 

  • Paterson W (1994) The physics of glaciers, 3rd edn. Oxford Press, Butterworth-Heinemann

    Google Scholar 

  • Radić V, Hock R (2006) Modeling future glacier mass balance and volume changes using ERA-40 reanalysis and climate models: a sensitivity study at Storglaciaren, Sweden. J Geophys Res Earth Surf. doi:10.1029/2005jf000440

    Google Scholar 

  • Raper SCB, Braithwaite RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 439:311–313. doi:10.1038/nature04448

    Article  Google Scholar 

  • Raper SCB, Braithwaite RJ (2009) Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry. Cryosphere 3:183–194. doi:10.5194/tc-3-183-2009

    Article  Google Scholar 

  • Rasmussen LA (2004) Altitude variation of glacier mass balance in Scandinavia. Geophys Res Lett. doi:10.1029/2004gl020273

    Google Scholar 

  • Rasmussen LA (2013) Meteorological controls on glacier mass balance in High Asia. Ann Glaciol 54(63):352–359. doi:10.3189/2013AoG63A353

    Article  Google Scholar 

  • Rasmussen LA, Wenger JM (2009) Upper-air model of summer balance on Mount Rainier, USA. J Glaciol 55(192):619–624. doi:10.3189/002214309789471012

    Article  Google Scholar 

  • Rasmussen LA, Andreassen LM, Conway H (2007) Reconstruction of mass balance of glaciers in southern Norway back to 1948. Ann Glaciol 46(1):255–260. doi:10.3189/172756407782871242

    Article  Google Scholar 

  • Rasmussen LA, Conway H, Krimmel RM, Hock R (2011) Surface mass balance, thinning and iceberg production, Columbia Glacier, Alaska, 1948–2007. J Glaciol 57(203):431–440. doi:10.3189/002214311796905532

    Article  Google Scholar 

  • Rye CJ, Arnold NS, Willis IC, Kohler J (2010) Modeling the surface mass balance of a high Arctic glacier using the ERA-40 reanalysis. J Geophys Res 115(F2):F02014. doi:10.1029/2009JF001364

    Google Scholar 

  • Sicart JE, Ribstein P, Francou B, Pouyaud B, Condom T (2007) Glacier mass balance of tropical Zongo glacier, Bolivia, comparing hydrological and glaciological methods. Global Planet Change 59(1–4):27–36. doi:10.1016/j.gloplacha.2006.11.024

    Article  Google Scholar 

  • Simmons A, Jones P, da Costa Bechtold V, Beljaars A, Kållberg P, Saarinen S, Uppala S, Viterbo P, Wedi N (2004) Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J Geophys Res 109(D24):D24115. doi:10.1029/2004JD005306

    Article  Google Scholar 

  • Six D, Vincent C (2014) Sensitivity of mass balance and equilibrium-line altitude to climate change in the French Alps. J Glaciol 60:867–878. doi:10.3189/2014JoG14J014

    Article  Google Scholar 

  • Sorg A, Bolch T, Stoffel M, Solomina O, Beniston M (2012) Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat Climate Change 2:725–731. doi:10.1038/nclimate1592

    Article  Google Scholar 

  • Unger-Shayesteh K (2011) Climate and glacier monitoring at Abramov glacier resumed. http://www.cawa-project.net/story/246

  • Unger-Shayesteh K, Vorogushyn S, Farinotti D, Gafurov A, Duethmann D, Mandychev A, Merz B (2013) What do we know about past changes in the water cycle of Central Asian headwaters? A review. Global Planet Change 110(Part A):4–25. doi:10.1016/j.gloplacha.2013.02.004

    Article  Google Scholar 

  • Wagnon P, Ribstein P, Kaser G, Berton P (1999) Energy balance and runoff seasonality of a Bolivian glacier. Global Planet Change 22(i-4):49–58. doi:10.1016/S0921-8181(99)00025-9

    Article  Google Scholar 

  • WGMS (1993) Fluctuations of glaciers 1985–1990 (Vol. VI). In: Haeberli W, Hoelze M (eds) IAHS/UNEP/UNESCO. World Glacier Monitoring Service, Zurich

  • WGMS (2011) Glacier mass balance bulletin no. 11 (2008–2009). In: Zemp M, Nussbaumer SU, Gärtner-Roer I, Hoelzle M, Paul F, Haeberli W (eds) ICSU (WDS)/IUGG (IACS)/UNEP/UNESCO/WMO. World Glacier Monitoring Service, Zurich

  • Xie Z, Jiankang H, Chaohai L, Shiyin L (1999) Measurement and estimative models of glacier mass balance in China, Geografiska Annaler. Ser A Phys Geogr 81(4):791–796. doi:10.1111/j.0435-3676.1999.00106.x

    Google Scholar 

  • Xin W, Shiyin L, Haidong H, Jian W, Qiao L (2011) Thermal regime of a supraglacial lake on the debris-covered Koxkar Glacier, southwest Tianshan, China. Environ Earth Sci 67(1):175–183. doi:10.1007/s12665-011-1490-1

    Article  Google Scholar 

  • Yang ZN (1991) Glacier water resource of China. Gansu Science and Technology Press, Lanzhou (in Chinese with English abstract)

    Google Scholar 

  • Zemp M (2012) The monitoring of glaciers at local, mountain, and Global Scale, Habilitationsschrift zur Erlangung der Venia Legendi. Faculty of Science, University of Zurich, Switzerland

  • Zhang Y, Liu SY, Xie CW, Ding YJ (2006) Application of a degree-day model for the determination of contributions to glacier meltwater and runoff near Keqicar Baqi glacier, southwestern Tien Shan. Ann Glaciol 43(1):280–284. doi:10.3189/172756406781812320

    Article  Google Scholar 

  • Zhang Y, Liu SY, Ding YJ (2007) Glacier meltwater and runoff modelling, Keqicar Baqi glacier, southwestern Tien Shan, China. J Glaciol 53(180):91–98. doi:10.3189/172756507781833956

    Article  Google Scholar 

  • Zhang SQ, Gao X, Ye BS, Zhang XW, Hagemann S (2012) A modified monthly degree-day model for evaluating glacier runoff changes in China. Part II Appl Hydrol Process 26(11):1697–1706. doi:10.1002/Hyp.8291

    Article  Google Scholar 

Download references

Acknowledgments

Acknowledgements to the WGMS for the mass balance data compilation and the ECMWF for the ERA-40 data production. This work was funded by the National Science and Technology Support Program of Chinese MOST (2012BAC19B07 and 2013BAC10B01), the National Natural Science Foundation of China (41371094) and the International S&T Cooperation Program of China (2010DFA92720-23). We thank JS Kargel, LA Rasmussen, Y Zhang and two anonymous reviewers for providing constructive comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Liu, S. Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century. Clim Dyn 46, 303–316 (2016). https://doi.org/10.1007/s00382-015-2585-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2585-2

Keywords

Navigation