Skip to main content
Log in

Thermodynamic disequilibrium of the atmosphere in the context of global warming

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The atmosphere is an example of a non-equilibrium system. This study explores the relationship among temperature, energy and entropy of the atmosphere, introducing two variables that serve to quantify the thermodynamic disequilibrium of the atmosphere. The maximum work, W max , that the atmosphere can perform is defined as the work developed through a thermally reversible and adiabatic approach to thermodynamic equilibrium with global entropy conserved. The maximum entropy increase, \((\Delta S)_{max}\), is defined as the increase in global entropy achieved through a thermally irreversible transition to thermodynamic equilibrium without performing work. W max is identified as an approximately linear function of \((\Delta S)_{max}.\) Large values of W max or \((\Delta S)_{max}\) correspond to states of high thermodynamic disequilibrium. The seasonality and long-term historical variation of W max and \((\Delta S)_{max}\) are computed, indicating highest disequilibrium in July, lowest disequilibrium in January with no statistically significant trend over the past 32 years. The analysis provides a perspective on the interconnections of temperature, energy and entropy for the atmosphere and allows for a quantitative investigation of the deviation of the atmosphere from thermodynamic equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Bannon PR (2005) Eulerian available energetics in moist atmospheres. J Atmos Sci. doi:10.1175/JAS3516.1

    Google Scholar 

  • Bannon PR (2012) Atmospheric available energy. J Atmos Sci. doi:10.1175/JAS-D-12-059.1

    Google Scholar 

  • Bannon PR (2013) Available energy of geophysical systems. J Atmos Sci. doi:10.1175/JAS-D-13-023.1

    Google Scholar 

  • Becker E (2009) Sensitivity of the upper mesosphere to the Lorenz energy cycle of the troposphere. J Atmos Sci. doi:10.1175/2008JAS2735.1

    Google Scholar 

  • Boer GJ, Lambert S (2008) The energy cycle in atmospheric models. Clim Dyn. doi:10.1007/s00382-007-0303-4

    Google Scholar 

  • Coleman BD, Greenberg JM (1967) Thermodynamics and the stability of fluid motion. Arch Ration Mech Anal 25(5):321–341

    Article  Google Scholar 

  • De Groot SR, Mazur P (2013) Non-equilibrium thermodynamics. Courier Dover Publications, New York

    Google Scholar 

  • Dutton JA (1973) The global thermodynamics of atmospheric motion. Tellus. doi:10.1111/j.2153-3490.1973.tb01599.x

    Google Scholar 

  • Fu Q, Johanson CM (2005) Satellite-derived vertical dependence of tropical tropospheric temperature trends. Geophys Res Lett. doi:10.1029/2004GL022266

    Google Scholar 

  • Gibbs JW (1873). A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Connecticut Acad Arts Sci

  • Gibbs JW (1878) On the equilibrium of heterogeneous substances. Am J Sci 96:441–458

    Article  Google Scholar 

  • Goody R (2000) Sources and sinks of climate entropy. Q J R Meteorol Soc. doi:10.1002/qj.49712656619

    Google Scholar 

  • Grody NC, Vinnikov KY, Goldberg MD, Sullivan JT, Tarpley JD (2004) Calibration of multisatellite observations for climatic studies: Microwave Sounding Unit (MSU). J Geophys Res. doi:10.1029/2004JD005079

    Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys. doi:10.1029/2010RG000345

    Google Scholar 

  • Hernández-Deckers D, von Storch JS (2010) Energetics responses to increases in greenhouse gas concentration. J Climate. doi:10.1175/2010JCLI3176.1

    Google Scholar 

  • Huang J, McElroy MB (2014) Contributions of the Hadley and Ferrel circulations to the energetics of the atmosphere over the past 32 years. J Climate. doi:10.1175/JCLI-D-13-00538.1

    Google Scholar 

  • Huang J, McElroy MB (2015) A 32-year perspective on the origin of wind energy in a warming climate. Renew Energy. doi:10.1016/j.renene.2014.12.045

    Google Scholar 

  • Karl TR, Hassol SJ, Miller CD, Murray WL (2006) Temperature trends in the lower atmosphere. Steps for understanding and reconciling differences

  • Kim YH, Kim MK (2013) Examination of the global lorenz energy cycle using MERRA and NCEP-reanalysis 2. Clim Dyn 40(5–6):1499–1513

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1980) Statistical physics, vol. 5. Course of theoretical physics, 30. pp 57–65

  • Li L, Ingersoll AP, Jiang X, Feldman D, Yung YL (2007) Lorenz energy cycle of the global atmosphere based on reanalysis datasets. Geophys Res Lett. doi:10.1029/2007GL029985

    Google Scholar 

  • Livezey RE, Dutton JA (1976) The entropic energy of geophysical fluid systems. Tellus. doi:10.1111/j.2153-3490.1976.tb00662.x

    Google Scholar 

  • Lorenz EN (1955) Available potential energy and the maintenance of the general circulation. Tellus. doi:10.1111/j.2153-3490.1955.tb01148.x

    Google Scholar 

  • Lorenz EN (1967) The natural and theory of the general circulation of the atmosphere. World Meteorological Organization, Geneva

  • Lorenz EN (1978) Available energy and the maintenance of a moist circulation. Tellus 30(1):15–31

    Article  Google Scholar 

  • Lucarini V, Fraedrich K, Ragone F (2011) New results on the thermodynamical properties of the climate system. arXiv preprint arXiv:1002.0157

  • Marques CA, Rocha A, Corte-Real J, Castanheira JM, Ferreira J, Melo-Gonçalves P (2009) Global atmospheric energetics from NCEP–reanalysis 2 and ECMWF–ERA40 reanalysis. Int J Climatol. doi:10.1002/joc.1704

    Google Scholar 

  • Marques CAF, Rocha A, Corte-Real J (2010) Comparative energetics of ERA-40, JRA-25 and NCEP-R2 reanalysis, in the wave number domain. Dyn Atmos Oceans. doi:10.1016/j.dynatmoce.2010.03.003

    Google Scholar 

  • Marques CAF, Rocha A, Corte-Real J (2011) Global diagnostic energetics of five state-of-the-art climate models. Clim Dyn. doi:10.1007/s00382-010-0828-9

    Google Scholar 

  • Oort AH (1964) On estimates of the atmospheric energy cycle. Mon Weather Rev 92(11):483–493

    Article  Google Scholar 

  • Oort AH, Peixóto JP (1974) The annual cycle of the energetics of the atmosphere on a planetary scale. J Geophys Res. doi:10.1029/JC079i018p02705

    Google Scholar 

  • Oort AH, Peixóto JP (1976) On the variability of the atmospheric energy cycle within a 5-year period. J Geophys Res. doi:10.1029/JC081i021p03643

    Google Scholar 

  • Ozawa H, Ohmura A, Lorenz RD, Pujol T (2003) The second law of thermodynamics and the global climate system: a review of the maximum entropy production principle. Rev Geophys. doi:10.1029/2002RG000113

    Google Scholar 

  • Paltridge GW (1975) Global dynamics and climate—a system of minimum entropy exchange. Q J R Meteorol Soc. doi:10.1002/qj.49710142906

    Google Scholar 

  • Paltridge GW (2001) A physical basis for a maximum of thermodynamic dissipation of the climate system. Q J R Meteorol Soc. doi:10.1002/qj.49712757203

    Google Scholar 

  • Pauluis O (2007) Sources and sinks of available potential energy in a moist atmosphere. J Atmos Sci. doi:10.1175/JAS3937.1

    Google Scholar 

  • Pauluis O, Held IM (2002a) Entropy budget of an atmosphere in radiative–convective equilibrium. Part I: maximum work and frictional dissipation. J Atmos Sci. doi:10.1175/1520-0469(2002)059<0125:EBOAAI>2.0.CO;2

  • Pauluis O, Held IM (2002b) Entropy budget of an atmosphere in radiative–convective equilibrium. Part II: Latent heat transport and moist processes. J Atmos Sci. doi:10.1175/1520-0469(2002)059<0140:EBOAAI>2.0.CO;2

  • Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, College Park

  • Peixoto JP, Oort AH, De Almeida M, Tomé A (1991) Entropy budget of the atmosphere. J Geophys Res. doi:10.1029/91JD00721

    Google Scholar 

  • Prigogine I (1962) Introduction to non-equilibrium thermodynamics. Wiley, New York

    Google Scholar 

  • Randel WJ, Wu F, Gaffen DJ (2000) Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J Geophys Res. doi:10.1029/2000JD900155

    Google Scholar 

  • Rienecker M et al (2007) The GEOS-5 data assimilation system—documentation of versions 5.0.1 and 5.1.0. NASA GSFC, Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-2007-104606, Vol. 27

  • Romps DM (2008) The dry-entropy budget of a moist atmosphere. J Atmos Sci. doi:10.1175/2008JAS2679.1

    Google Scholar 

  • Santer BD et al (2004) Identification of anthropogenic climate change using a second generation reanalysis. J Geophys Res. doi:10.1029/2004JD005075

    Google Scholar 

  • Simmons AJ et al (2004) Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J Geophys Res. doi:10.1029/2004JD005306

    Google Scholar 

  • Vinnikov KY, Grody NC, Robock A, Stouffer RJ, Jones PD, Goldberg MD (2006) Temperature trends at the surface and in the troposphere. J Geophys Res. doi:10.1029/2005JD006392

    Google Scholar 

Download references

Acknowledgments

The work described here was supported by the National Science Foundation, NSF-AGS-1019134. Junling Huang was also supported by the Harvard Graduate Consortium on Energy and Environment. We acknowledge helpful and constructive comments from Michael J. Aziz and Peter R. Bannon and from the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junling Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., McElroy, M.B. Thermodynamic disequilibrium of the atmosphere in the context of global warming. Clim Dyn 45, 3513–3525 (2015). https://doi.org/10.1007/s00382-015-2553-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2553-x

Keywords

Navigation