Skip to main content
Log in

Interannual variability of the spring atmospheric heat source over the Tibetan Plateau forced by the North Atlantic SSTA

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Data analysis indicates that the interannual variability of the spring atmospheric heat source over the Tibetan Plateau (TP) depends largely on the intensity of the overlying subtropical westerly jet (WJ), which is closely related to the early spring (February–March–April) sea surface temperature anomaly (SSTA) tripole pattern over the North Atlantic, i.e., the SSTA tripole pattern with a warm core to the southeast of Newfoundland and two cold cores to the south of Iceland and southeast of Bermuda, respectively. Such an SSTA pattern can be regarded as a response to the atmospheric forcing of the preceding January–February–March North Atlantic Oscillation. Numerical experiment results from both linear baroclinic model with an idealized diabatic heating profile and an atmospheric general circulation model with prescribed SSTA forcing demonstrate that the warm core alone of the tripole pattern can stimulate a steady downstream Rossby wave train, which further intensifies the spring WJ over the TP. As a result, a positive anomaly of surface sensible heating occurs over most parts of the TP, whereas the precipitation and corresponding latent heating is characterized by a seesaw pattern with a positive/negative anomaly over the northern/southern TP. Meanwhile, the air column radiation cooling effect is enhanced to a certain degree over the plateau. Further analysis suggests that the early spring SSTA over the North Atlantic may exert a seasonal-lagged impact upon the East Asian summer monsoon by modulating the thermal forcing over the TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Cayan DR (1992a) Latent and sensible heat flux anomalies over the Northern Oceans: the connection to monthly atmospheric circulation. J Clim 5:354–369

    Article  Google Scholar 

  • Cayan DR (1992b) Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J Phys Oceanogr 22:859–881

    Article  Google Scholar 

  • Chen LX, Reiter E, Feng ZQ (1985) The atmospheric heat source over the Tibetan Plateau: May–August 1979. Mon Weather Rev 113:1771–1790

    Article  Google Scholar 

  • Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623

    Article  Google Scholar 

  • Dai FS, Yu RC, Zhang XH, Yu YQ (2004) A statistical low-level cloud scheme and its tentative application in a general circulation model (in Chinese). Acta Meteorol Sin 62:385–394

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda A, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Hamiberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Köhler M, Matricardi M, Mcnally AP, Monge-sanz BM, Morcrette JJ, Park BK, Peubey C, De Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Deser C, Timlin M (1997) Atmosphere-ocean interaction on weekly timescales in the North Atlantic and Pacific. J Clim 10:393–408

    Article  Google Scholar 

  • Duan A, Wu G (2009) Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part II: connection with climate warming. J Clim 22:4197–4212

    Article  Google Scholar 

  • Duan A, Wang MR, Lei YH, Cui YF (2013) Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008. J Clim 25:261–274. doi:10.1175/JCLI-D-11-00669.1

    Article  Google Scholar 

  • Duan A, Xiao ZX, Hu J (2014) Can current AGCMs reproduce historical changes in the atmospheric diabatic heating over the Tibetan Plateau? Atmos Ocean Sci Lett 7:143–148

    Article  Google Scholar 

  • Edwards JM, Slingo A (1996) Studies with a flexible new radiation code. I: choosing a configuration for a large-scale model. Q J R Meteorol Soc 122:689–719

    Article  Google Scholar 

  • Fan M, Schneider EK (2012) Observed decadal North Atlantic tripole SST variability. Part I: weather noise forcing and coupled response. J Atmos Sci 69(1):35–50

    Article  Google Scholar 

  • Flohn H (1957) Large-scale aspects of the summer monsoon in South and East Asia. J Meteorol Soc Jpn 35:180–186

    Google Scholar 

  • Gong DY, Ho CH (2003) Arctic oscillation signals in the East Asian summer monsoon. J Geophys Res 108:4066. doi:10.1029/2002JD002193

    Article  Google Scholar 

  • Gong DY, Kim SJ, Ho CH (2009) Arctic and Antarctic Oscillation signature in tropical coral proxies over the South China sea. Ann Geophys 27:1979–1988

    Article  Google Scholar 

  • Gong DY, Yang J, Kim SJ, Gao Y, Guo D, Zhou T, Hu M (2011) Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Clim Dyn 37:2199–2216

    Article  Google Scholar 

  • He JH, Qi L, Wei J, Chi YZ (2007) Reinvestigations on the East Asian subtropical monsoon and tropical monsoon. Chin J Atmos Sci 31(6):1257

  • Herceg-Bulić I, Kucharski F (2014) North Atlantic SSTs as a link between the Wintertime NAO and the following spring climate. J Clim 27:186–201

    Article  Google Scholar 

  • Holtslag AAM, Boville BA (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Clim 6:1825–1842

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II Reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Li CF, Yanai M (1996) The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast. J Clim 9:358–375

    Article  Google Scholar 

  • Li GP, Duan TY, Gong YF (2000) The bulk transfer coefficients and surface fluxes on the western Tibetan Plateau (in Chinese). Chin Sci Bull 45:865–869

    Article  Google Scholar 

  • Li GP, Duan TY, Haginoya S, Chen LX (2001) Estimates of the bulk transfer coefficients and surface fluxes over the Tibetan using AWS data. J Meteorol Soc Jpn Ser 2 79(2):625–635

    Article  Google Scholar 

  • Li J, Yu R, Zhou T, Wang B (2005) Why is there an early spring cooling shift downstream of the Tibetan Plateau? J Clim 18:4660–4668

    Article  Google Scholar 

  • Li J, Yu R, Zhou T (2008) Teleconnection between NAO and Climate Downstream of the Tibetan Plateau. J Clim 21:4680–4690

    Article  Google Scholar 

  • Liu G, Zhao P, Wu R, Chen J (2012) Potential flaws of interdecadal changes over eastern China around the early 1990s in the National Centers for Environmental Prediction– National Center for Atmospheric Research reanalyses. J Geophys Res 117:D02111. doi:10.1029/2011JD016327

    Google Scholar 

  • Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21:1863–1898. doi:10.1002/joc.693

    Article  Google Scholar 

  • Miller AJ, Zhou S, Yang SK (2003) Relationship of the Arctic and Antarctic Oscillations to the outgoing longwave radiation. J Clim 16:1583–1592

    Article  Google Scholar 

  • Murakami T, Ding YH (1982) Wind and temperature changes over Eurasia during the early summer of 1979. J Meteorol Soc Jpn 60:183–196

    Google Scholar 

  • Nakamura T, Tachibana Y, Shimoda H (2007) Importance of cold and dry surge in substantiating the NAM and ENSO relationship. Geophys Res Lett 34:L22703. doi:10.1029/2007GL031220

    Article  Google Scholar 

  • Nordeng TE (1994) Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Technical Memorandum 206

  • Ogi M, Tachibana Y, Yamazaki K (2003) Impact of the wintertime North Atlantic Oscillation (NAO) on the summertime atmospheric circulation. Geophys Res Lett 30(13):1704. doi:10.1029/2003GL017280

    Article  Google Scholar 

  • Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 Reanalysis. J Meteorol Soc Jpn 85:369–432

    Article  Google Scholar 

  • Palmer TN, Shutts GJ, Swinbank R (1986) Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Q J R Meteorol Soc 112:1011–1039

    Google Scholar 

  • Pan L (2005) Observed positive feedback between the NAO and the North Atlantic SSTA tripole. Geophys Res Lett 32:L06707. doi:10.1029/2005GL022427

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos (1984–2012). 108:4407. doi:10.1029/2002JD002670

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s Modern-Era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Saunders MA, Qian B, Lloyd-Hughes B (2003) Summer snow extent heralding of the winter North Atlantic Oscillation. Geophys Res Lett 30:7

    Article  Google Scholar 

  • Schneider EK, Fan M (2007) Weather noise forcing of surface climate variability. J Atmos Sci 69:51–64

    Article  Google Scholar 

  • Schneider EK, Fan M (2012) Observed decadal North Atlantic tripole SST variability. Part II: diagnosis of mechanisms. J Atmos Sci 69:51–64

    Article  Google Scholar 

  • Shen RJ, Reiter ER, Bresch JF (1986) Some aspects of the effects of sensible heating on the development of summer weather systems over the Tibetan Plateau. J Atmos Sci 43:2241–2260

    Article  Google Scholar 

  • Slingo JM (1980) A cloud parameterization scheme derived from GATE data for use with a numerical model. Q J R Meteorol Soc 106:747–770

    Article  Google Scholar 

  • Slingo JM (1989) A GCM parameterization for the shortwave radiative properties of water clouds. J Atmos Sci 46:1419–1427

    Article  Google Scholar 

  • Song XL (2005) The evaluation analysis of two kinds of mass flux cumulus parameterizations in climate simulation (in Chinese). Ph.D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences

  • Sun ZA (2005) Parameterizations of radiation and cloud optical properties. BMRC research report

  • Sung MK, Kwon WT, Baek HJ, Boo KO, Lim GH, Kug JS (2006) A possible impact of the North Atlantic Oscillation on the east Asian summer monsoon precipitation. Geophys Res Lett 33(21):21713

    Article  Google Scholar 

  • Takaya K, Nakamura H (2001) A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58:608–627

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800

    Article  Google Scholar 

  • Wang J, Bao Q, Liu YM, Wu GX, He B, Wang XC (2012a) Performances of SAMIL on the global heating and the East Asian summer monsoon (in Chinese). Chin J Atmos Sci 36:63–76

    Google Scholar 

  • Wang X, Liu Y, Bao Q, Wang Z (2012b) Climate sensitivity and cloud feedback processes imposed by two different external forcing in an aquaplanet GCM. Theoret Appl Climatol 110:1–10

    Article  Google Scholar 

  • Wang ZQ, Duan A, Wu GX (2013) Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: case studies using the WRF model. Clim Dyn 1:244

  • Watanabe M, Jin FF (2003) A moist linear baroclinic model: coupled dynamical–convective response to El Nin ̃o. J Clim 16:1121–1139

    Article  Google Scholar 

  • Watanabe M, Kimoto M (2000) Atmosphere ocean thermal coupling in the North Atlantic: a positive feedback. Q J R Meteorol Soc 126:3343–3369

    Article  Google Scholar 

  • Watanabe M, Kimoto M, Nitta T (1999) A comparison of decadal climate oscillations in the North Atlantic detected in observations and a coupled GCM. J Clim 12:2920–2940. doi:10.1175/1520-0442(1999)012<2920:ACODCO>2.0.CO;2

    Article  Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926

    Article  Google Scholar 

  • Wu G, Liu H, Zhao Y, Li W (1996) A nine-layer atmospheric general circulation model and its performance. Adv Atmos Sci 13:1–18

    Article  Google Scholar 

  • Wu GX, Li W, Guo H, Liu H, Xue J, Wang Z (1997) Sensible heat driven air-pump over the Tibetan Plateau and its impacts on the Asian summer monsoon. Collections on the memory of Zhao Jiuzhang. Chinese Science Press, Beijing, pp 116–126

    Google Scholar 

  • Wu GX, Liu Y, Wang T, Wan R, Liu X, Li W, Liang X (2007) The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J Hydrometeorol 8(4):770–789

  • Wu Z, Wang B, Li J, Jin FF (2009) An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO. J Geophys Res 114:D18120. doi:10.1029/2009JD011733

    Article  Google Scholar 

  • Wu GX, Liu YM, He B, Bao Q, Duan AM, Jin FF (2012) Thermal controls on the Asian summer monsoon. Sci Rep 2:404. doi:10.1038/srep00404

    Google Scholar 

  • Yanai M, Li C (1994) Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon Weather Rev 122:305–323

    Article  Google Scholar 

  • Yang S, Lau K-M, Yoo S-H, Kinter JL, Miyakoda K, Ho C-H (2004) Upstream subtropical signals preceding the Asian summer monsoon circulation. J Clim 17:4213–4229

    Article  Google Scholar 

  • Yang K, Guo X, He J, Qin J, Koike T (2011) On the Climatology and trend of the Atmospheric Heat Source over the Tibetan Plateau: an experiments-supported revisit. J Clim 24(5):1525–1541

  • Yeh TC, Gao YX (1979) Meteorology of the Qinghai-Xizang (Tibet) Plateau. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Yeh TC, Lo SW, Chu PC (1957) On the heat balance and circulation structure in troposphere over Tibetan Plateau (in Chinese). Acta Metorol Sinica 28:108–121

    Google Scholar 

  • Yu JJ, Liu YM, Wu GX (2011a) An analysis of the diabatic heating characteristic of atmosphere over the Tibetan Plateau in winter I: climatology. Acta Meteorologica Sinica 69:79–88

    Google Scholar 

  • Yu JJ, Liu YM, Wu GX (2011b) An analysis of the diabatic heating characteristic of atmosphere over the Tibetan Plateau in winter II: interannal variation. Acta Meteorologica Sinica 69:89–98

    Google Scholar 

  • Zhao P, Chen LX (2001) Climatic features of atmospheric heat source/sink over the Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China. Sci China Ser D 44:858–864

    Article  Google Scholar 

  • Zhou T, Yu R, Gao Y, Drange H (2006) Ocean- atmosphere coupled model simulation of North Atlantic interannual variability I: local air–sea interaction. Acta Meteorologica Sinica 64:1–17 (in Chinese)

    Google Scholar 

  • Zhu CW, Zhou XQ, Zhao P, Chen LX, He JH (2011) Onset of East Asian Sub-tropical Summer Monsoon and Rainy Season in China Earth. Sci China Earth Sci. doi:10.1007/s11430-011-4284-0

  • Zhu XY, Liu YM, Wu GX (2012) An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets. Sci China Earth Sci 55:779–786. doi:10.1007/s11430-012-4379-2

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported jointly by the National Natural Science Foundation of China (Grant Nos. 91337216, 41175070 and 40925015) and the Special Fund for Public Welfare Industry (meteorology) administered by the Chinese Ministry of Finance and Ministry of Science and Technology (Grant No. GYHY201406001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anmin Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Duan, A., Liu, Y. et al. Interannual variability of the spring atmospheric heat source over the Tibetan Plateau forced by the North Atlantic SSTA. Clim Dyn 45, 1617–1634 (2015). https://doi.org/10.1007/s00382-014-2417-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2417-9

Keywords

Navigation