Skip to main content

Advertisement

Log in

Sensitivity of a coupled climate model to canopy interception capacity

Climate Dynamics Aims and scope Submit manuscript

Abstract

The canopy interception capacity is a small but key part of the surface hydrology, which affects the amount of water intercepted by vegetation and therefore the partitioning of evaporation and transpiration. However, little research with climate models has been done to understand the effects of a range of possible canopy interception capacity parameter values. This is in part due to the assumption that it does not significantly affect climate. Near global evapotranspiration products now make evaluation of canopy interception capacity parameterisations possible. We use a range of canopy water interception capacity values from the literature to investigate the effect on climate within the climate model HadCM3. We find that the global mean temperature is affected by up to −0.64 K globally and −1.9 K regionally. These temperature impacts are predominantly due to changes in the evaporative fraction and top of atmosphere albedo. In the tropics, the variations in evapotranspiration affect precipitation, significantly enhancing rainfall. Comparing the model output to measurements, we find that the default canopy interception capacity parameterisation overestimates canopy interception loss (i.e. canopy evaporation) and underestimates transpiration. Overall, decreasing canopy interception capacity improves the evapotranspiration partitioning in HadCM3, though the measurement literature more strongly supports an increase. The high sensitivity of climate to the parameterisation of canopy interception capacity is partially due to the high number of light rain-days in the climate model that means that interception is overestimated. This work highlights the hitherto underestimated importance of canopy interception capacity in climate model hydroclimatology and the need to acknowledge the role of precipitation representation limitations in determining parameterisations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Best MJ, Pryor M, Clark DB et al (2011) The joint UK land environment simulator (JULES), model description—part 1: energy and water fluxes. Geosci Model Dev 4:677–699. doi:10.5194/gmd-4-677-2011

    Article  Google Scholar 

  • Booth BBB, Jones CD, Collins M et al (2012) High sensitivity of future global warming to land carbon cycle processes. Environ Res Lett 7:024002. doi:10.1088/1748-9326/7/2/024002

    Article  Google Scholar 

  • Boyle J, Klein SA (2010) Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J Geophys Res Atmos 115:D23113. doi:10.1029/2010JD014262

    Article  Google Scholar 

  • Breuer L, Eckhardt K, Frede H-G (2003) Plant parameter values for models in temperate climates. Ecol Model 169:237–293. doi:10.1016/S0304-3800(03)00274-6

    Article  Google Scholar 

  • Clark DB, Mercado LM, Sitch S et al (2011) The joint UK land environment simulator (JULES), model description—part 2: carbon fluxes and vegetation dynamics. Geosci Model Dev 4:701–722. doi:10.5194/gmd-4-701-2011

    Article  Google Scholar 

  • Collins M, Tett SFB, Cooper C (2001) The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 17:61–81. doi:10.1007/s003820000094

    Article  Google Scholar 

  • Collins WJ, Bellouin N, Doutriaux-Boucher M et al (2011) Development and evaluation of an Earth-system model: HadGEM2. Geosci Model Dev 4:1051–1075. doi:10.5194/gmd-4-1051-2011

    Article  Google Scholar 

  • Cox PM (2001) Description of the TRIFFID dynamic global vegetation model. Hadley Cent Tech Note 24:1–16

    Google Scholar 

  • Cox P, Huntingford C, Harding R (1998) A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J Hydrol 212–213:79–94. doi:10.1016/S0022-1694(98)00203-0

    Article  Google Scholar 

  • Cox PM, Betts RA, Bunton CB et al (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15:183–203. doi:10.1007/s003820050276

    Article  Google Scholar 

  • Crétat J, Vizy EK, Cook KH (2013) How well are daily intense rainfall events captured by current climate models over Africa? Clim Dyn:1–21. doi:10.1007/s00382-013-1796-7

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630. doi:10.1175/JCLI3884.1

    Article  Google Scholar 

  • De Noblet-Ducoudré N, Boisier J-P, Pitman A et al (2012) Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: results from the first set of LUCID experiments. J Clim 25:3261–3281. doi:10.1175/JCLI-D-11-00338.1

    Article  Google Scholar 

  • Demory M-E (2009) Does overestimated canopy interception weaken the UK land surface model response to precipitation events? ILeaps Newsl 7:14–16

    Google Scholar 

  • Desborough CE, Pitman AJ, McAvaney B (2001) Surface energy balance complexity in GCM land surface models. Part II: coupled simulations. Clim Dyn 17:615–626. doi:10.1007/s003820000131

    Article  Google Scholar 

  • Dolman AJ, Gregory D (1992) The parametrization of rainfall interception in GCMs. Q J R Meteorol Soc 118:455–467. doi:10.1002/qj.49711850504

    Article  Google Scholar 

  • Dunkerley D (2000) Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies. Hydrol Process 14:669–678. doi:10.1002/(SICI)1099-1085(200003)14:4<669:AID-HYP965>3.0.CO;2-I

    Article  Google Scholar 

  • Dunkerley DL, Booth TL (1999) Plant canopy interception of rainfall and its significance in a banded landscape, arid western New South Wales, Australia. Water Resour Res 35:1581–1586. doi:10.1029/1999WR900003

    Article  Google Scholar 

  • Dykes AP (1997) Rainfall interception from a lowland tropical rainforest in Brunei. J Hydrol 200:260–279. doi:10.1016/S0022-1694(97)00023-1

    Article  Google Scholar 

  • Eckhardt K, Breuer L, Frede H-G (2003) Parameter uncertainty and the significance of simulated land use change effects. J Hydrol 273:164–176. doi:10.1016/S0022-1694(02)00395-5

    Article  Google Scholar 

  • Essery R, Best M, Cox P (2001) MOSES 2.2 technical documentation. Hadley Centre Technical Note

  • Garcia-Estringana P, Alonso-Blázquez N, Alegre J (2010) Water storage capacity, stemflow and water funneling in Mediterranean shrubs. J Hydrol 389:363–372. doi:10.1016/j.jhydrol.2010.06.017

    Article  Google Scholar 

  • Gash JHC (1979) An analytical model of rainfall interception by forests. Q J R Meteorol Soc 105:43–55. doi:10.1002/qj.49710544304

    Article  Google Scholar 

  • Gerrits AMJ, Pfister L, Savenije HHG (2010) Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol Process 24:3011–3025. doi:10.1002/hyp.7712

    Article  Google Scholar 

  • Gregory D, Smith RNB, Cox PM (1994) Canopy, surface and soil hydrology. Unified Model documentation paper 25. Bracknell, UK

  • Herwitz SR (1985) Interception storage capacities of tropical rainforest canopy trees. J Hydrol 77:237–252. doi:10.1016/0022-1694(85)90209-4

    Article  Google Scholar 

  • Jackson L, Vellinga M (2013) Multidecadal to centennial variability of the AMOC: HadCM3 and a perturbed physics ensemble. J Clim 26:2390–2407. doi:10.1175/JCLI-D-11-00601.1

    Article  Google Scholar 

  • Jasechko S, Sharp ZD, Gibson JJ et al (2013) Terrestrial water fluxes dominated by transpiration. Nature 496:347–350. doi:10.1038/nature11983

    Article  Google Scholar 

  • Keim RF, Skaugset AE, Weiler M (2006) Storage of water on vegetation under simulated rainfall of varying intensity. Adv Water Resour 29:974–986. doi:10.1016/j.advwatres.2005.07.017

    Article  Google Scholar 

  • Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high-resolution regional climate model. J Clim 25:5791–5806. doi:10.1175/JCLI-D-11-00562.1

    Article  Google Scholar 

  • Klaassen W, Bosveld F, de Water E (1998) Water storage and evaporation as constituents of rainfall interception. J Hydrol 212–213:36–50. doi:10.1016/S0022-1694(98)00200-5

    Article  Google Scholar 

  • Kool D, Agam N, Lazarovitch N et al (2014) A review of approaches for evapotranspiration partitioning. Agric For Meteorol 184:56–70. doi:10.1016/j.agrformet.2013.09.003

    Article  Google Scholar 

  • Lawrence DM, Thornton PE, Oleson KW, Bonan GB (2007) The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on land–atmosphere interaction. J Hydrometeorol 8:862–880. doi:10.1175/JHM596.1

    Article  Google Scholar 

  • Link TE, Unsworth M, Marks D (2004) The dynamics of rainfall interception by a seasonal temperate rainforest. Agric For Meteorol 124:171–191. doi:10.1016/j.agrformet.2004.01.010

    Article  Google Scholar 

  • Liu C, Haines K, Iwi A, Smith D (2012) Comparing the UK met office climate prediction system DePreSys with idealized predictability in the HadCM3 model. Q J R Meteorol Soc 138:81–90. doi:10.1002/qj.904

    Article  Google Scholar 

  • Lloyd CR, Gash JHC, Shuttleworth WJ, de O Marques FA (1988) The measurement and modelling of rainfall interception by Amazonian rain forest. Agric For Meteorol 43:277–294. doi:10.1016/0168-1923(88)90055-X

    Article  Google Scholar 

  • Macinnis-Ng CMO, Flores EE, Müller H, Schwendenmann L (2014) Throughfall and stemflow vary seasonally in different land-use types in a lower montane tropical region of Panama. Hydrol Process 28:2174–2184. doi:10.1002/hyp.9754

    Article  Google Scholar 

  • Mao J, Pitman AJ, Phipps SJ et al (2011) Global and regional coupled climate sensitivity to the parameterization of rainfall interception. Clim Dyn 37:171–186. doi:10.1007/s00382-010-0862-7

    Article  Google Scholar 

  • Martin GM, Bellouin N, Collins WJ et al (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4:723–757. doi:10.5194/gmd-4-723-2011

    Article  Google Scholar 

  • Miralles DG, Gash JH, Holmes TRH et al (2010) Global canopy interception from satellite observations. J Geophys Res Atmos 115:D16122. doi:10.1029/2009JD013530

    Article  Google Scholar 

  • Motahari M, Attarod P, Pypker TG et al (2013) Rainfall interception in a Pinus eldarica plantation in a semi-arid climate zone: an application of the gash model. J Agric Sci Technol 15:981–994

    Google Scholar 

  • Murphy JM, Booth BBB, Collins M et al (2007) A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Philos Trans R Soc Math Phys Eng Sci 365:1993–2028. doi:10.1098/rsta.2007.2077

    Article  Google Scholar 

  • Oleson KW, Niu G-Y, Yang Z-L et al (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res Biogeosci 113:n/a–n/a. doi:10.1029/2007JG000563

  • Pitman AJ, Henderson-Sellers A, Yang Z-L (1990) Sensitivity of regional climates to localized precipitation in global models. Nature 346:734–737. doi:10.1038/346734a0

    Article  Google Scholar 

  • Pitman AJ, Yang Z-L, Henderson-Sellers A (1993) Sub-grid scale precipitation in ALCMs: re-assessing the land surface sensitivity using a single column model. Clim Dyn 9:33–41. doi:10.1007/BF00208012

    Article  Google Scholar 

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonventura L et al (2003) The atmospheric general circulation model ECHAM5. Part I: model description, report 349, Max Planck Institute for Meteorology, Hamburg

  • Rutter AJ, Kershaw KA, Robins PC, Morton AJ (1971) A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine. Agric Meteorol 9:367–384. doi:10.1016/0002-1571(71)90034-3

    Article  Google Scholar 

  • Savenije HHG (2004) The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol Process 18:1507–1511. doi:10.1002/hyp.5563

    Article  Google Scholar 

  • Scott R, Koster RD, Entekhabi D, Suarez MJ (1995) Effect of a canopy interception reservoir on hydrological persistence in a general circulation model. J Clim 8:1917–1922. doi:10.1175/1520-0442(1995)008<1917:EOACIR>2.0.CO;2

    Article  Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ et al (1996) A revised land surface parameterization (SiB2) for atmospheric GCMS. Part I: model formulation. J Clim 9:676–705. doi:10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2

    Article  Google Scholar 

  • Shuttleworth WJ (1988) Macrohydrology: the new challenge for process hydrology. J Hydrol 100:31–56. doi:10.1016/0022-1694(88)90180-1

    Article  Google Scholar 

  • Sun Y, Solomon S, Dai A, Portmann RW (2007) How often will it rain? J Clim 20:4801–4818. doi:10.1175/JCLI4263.1

    Article  Google Scholar 

  • Teuling AJ, Uijlenhoet R, van den Hurk B, Seneviratne SI (2009) Parameter sensitivity in LSMs: an analysis using stochastic soil moisture models and ELDAS soil parameters. J Hydrometeorol 10:751–765. doi:10.1175/2008JHM1033.1

    Article  Google Scholar 

  • Van den Hoof C, Vidale PL, Verhoef A, Vincke C (2013) Improved evaporative flux partitioning and carbon flux in the land surface model JULES: impact on the simulation of land surface processes in temperate Europe. Agric For Meteorol 181:108–124. doi:10.1016/j.agrformet.2013.07.011

    Article  Google Scholar 

  • Wallace J, Macfarlane C, McJannet D et al (2013) Evaluation of forest interception estimation in the continental scale Australian water resources assessment-landscape (AWRA-L) model. J Hydrol 499:210–223. doi:10.1016/j.jhydrol.2013.06.036

    Article  Google Scholar 

  • Wang G, Eltahir EAB (2000) Modeling the biosphere–atmosphere system: the impact of the subgrid variability in rainfall interception. J Clim 13:2887–2899. doi:10.1175/1520-0442(2000)013<2887:MTBAST>2.0.CO;2

    Article  Google Scholar 

  • Warrilow DA, Sangster AB, Slingo J (1986) Modelling of land surface processes and their influence on European climate. Met office technical note DCTN 38, Bracknell, UK

Download references

Acknowledgments

We would like to thank John Gash for his comments on a draft version of the manuscript, as well as the two anonymous reviewers for their comments on the submitted manuscript. We gratefully acknowledge Diego Miralles for providing the canopy evaporation satellite product for comparison. CDJ is supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). TDB is supported by Natural Environment Research Council Dtg NE/J500033/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Davies-Barnard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2033 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies-Barnard, T., Valdes, P.J., Jones, C.D. et al. Sensitivity of a coupled climate model to canopy interception capacity. Clim Dyn 42, 1715–1732 (2014). https://doi.org/10.1007/s00382-014-2100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2100-1

Keywords

Navigation