Skip to main content
Log in

Why were some La Niñas followed by another La Niña?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates why some La Niña events are followed by another La Niña and some others are not. We propose two preconditions that result in continuation of a La Niña. The first one is that La Niña must be a strong event (a major La Niña). This ensures that the reflected Rossby wave signal at the eastern boundary of the Pacific has a strong westward propagating cold ocean temperature anomaly over the off-equatorial region. The off-equator cold anomaly may not be conducive to the equatorial recharge process, and as a result, may favor the persistence of cold ocean subsurface temperature anomaly and prevent the transition from La Niña to El Niño. The second precondition is whether there are eastward propagating downwelling Kelvin waves during the decay phase of a major La Niña. Eastward propagating downwelling Kelvin waves could lead to demise for a tendency for a follow-up La Niña. The equatorial Kelvin wave activities are associated with fluctuations of surface wind in the equatorial far-western Pacific. The analysis suggests that both the surface wind in the equatorial far-western Pacific and the recharge/discharge of the equatorial Pacific are indicators for occurrence or no occurrence of a follow-up La Niña event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Annamalai H, Kida S, Hafner J (2010) Potential impact of the tropical Indian Ocean-Indonesian seas on El Niño characteristics. J Clim 23:3933–3952

    Article  Google Scholar 

  • Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–2011: is our capability increasing? Bull Amer Meteor Soc 93(5):631–651

    Article  Google Scholar 

  • Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. Preprints, eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, Seattle, WA. Amer Meteor Soc

  • Burgers G, Stephenson DB (1999) The “normality” of El Niño. Geophys Res Lett 26:1027–1030

    Article  Google Scholar 

  • Clarke AJ, Gorder SV (2001) ENSO prediction using an ENSO trigger and a proxy for western equatorial Pacific warm pool movement. Geophys Res Lett 28(4):579–582

    Article  Google Scholar 

  • Clarke AJ, Van Gorder S, Colantuono G (2007) Wind stress curl and ENSO discharge/recharge in the equatorial Pacific. J Phys Oceanogr 37(4):1077–1091

    Article  Google Scholar 

  • Glantz MH (2000) Currents of change: impacts of El Niño and La Niña on climate and society. Cambridge University Press, Cambridge, p 266, ISBN 052178672X

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean–atmosphere general circulation models: progress and challenges. Bull Amer Meteor Soc 90:325–340

    Google Scholar 

  • Hoerling M, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786

    Article  Google Scholar 

  • Hu Z-Z, Kumar A, Jha B, Wang W, Huang B, Huang B (2012) An analysis of warm pool and cold tongue El Niños: air-sea coupling processes, global influences, and recent trends. Clim Dyn 38(9–10):2017–2035. doi:10.1007/s00382-011-1224-9

    Article  Google Scholar 

  • Hu Z-Z, Kumar A, Ren H-L, Wang H, L’Heureux M, Jin F-F (2013) Weakened interannual variability in the tropical Pacific Ocean since 2000. J Clim 26(8):2601–2613. doi:10.1175/JCLI-D-12-00265.1

    Google Scholar 

  • Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29(23):2125. doi:10.1029/2002GL015924

    Article  Google Scholar 

  • Kug J-S, Kang I-S (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19:1784–1801

    Article  Google Scholar 

  • Kug J-S, An S-I, Jin F-F, Kang I-S (2005) Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophys Res Lett 32:L05706. doi:10.1029/2004GL021674

    Article  Google Scholar 

  • Kumar A, Hu Z-Z (2012) Uncertainty in the ocean-atmosphere feedbacks associated with ENSO in the reanalysis products. Clim Dyn 39(3–4):575–588. doi:10.1007/s00382-011-1104-3

    Article  Google Scholar 

  • Kumar A, Hu Z-Z (2013) Interannual variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Clim Dyn (online release). doi:10.1007/s00382-013-1721-0

    Google Scholar 

  • Kumar A, Jha B, L’Heureux M (2010) Are tropical SST trends changing the global teleconnection during La Niña? Geophys Res Lett 37:L12702. doi:10.1029/2010GL043394

    Google Scholar 

  • Lau N-C, Nath MJ (2003) Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. J Clim 16:3–20

    Article  Google Scholar 

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007

    Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing long wave radiation dataset. Bull Amer Meteor Soc 77:1275–1277

    Google Scholar 

  • McPhaden MJ (2012) A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys Res Lett 39:L09706. doi:10.1029/2012GL051826

    Article  Google Scholar 

  • McPhaden MJ, Zhang X (2009) Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys Res Lett 36:L13703. doi:10.1029/2009GL038774

    Article  Google Scholar 

  • McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. doi:10.1029/2011GL048275

    Article  Google Scholar 

  • Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559

    Article  Google Scholar 

  • Ohba M, Ueda H (2009) Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J Clim 22:177–192

    Article  Google Scholar 

  • Okumura YM, Ohba M, Deser C, Ueda H (2011) A proposed mechanism for the asymmetric duration of El Niño and La Niña. J Clim 24:3822–3829. doi:10.1175/2011JCLI3999.1

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Seo K-H, Xue Y (2005) MJO-related oceanic Kelvin waves and the ENSO cycle: a study with the NCEP Global Ocean Data Assimilation System. Geophys Res Lett 32:L07712. doi:10.1029/2005GL022511

    Article  Google Scholar 

  • Wang C (2001) A unified oscillator model for the El Niño-Southern Oscillation. J Clim 14:98–115

    Article  Google Scholar 

  • Wang B, Zhang Q (2002) Pacific-East Asian teleconnection, part II: how the Philippine Sea anticyclone established during development of El Niño. J Clim 15:3252–3265

    Article  Google Scholar 

  • Wang W, Chen M, Kumar A, Xue Y (2011) How important is intraseasonal surface wind variability to real-time ENSO prediction? Geophys Res Lett 38:L13705. doi:10.1029/2011GL047684

    Google Scholar 

  • Wang C, Deser C, Yu J-Y, DiNezio P, Clement A (2013) El Niño-Southern Oscillation (ENSO): a review. In: Glymn P, Manzello D, Enochs I (eds) Coral reefs of the eastern Pacific. Springer Science Publisher (in press)

  • Wyrtki K (1985) Water displacements in the Pacific and the genesis of El Niño cycles. J Geophys Res 90(C4):7129–7132

    Article  Google Scholar 

  • Zhang X, McPhaden MJ (2010) Surface layer heat balance in the eastern equatorial Pacific Ocean on interannual time scales: influence of local versus remote wind forcing. J Clim 23:4375–4394. doi:10.1175/2010JCLI3469.1

    Google Scholar 

  • Zhang W-J, Li J-P, Jin F-F (2009) Spatial and temporal features of ENSO meridional scales. Geophys Res Lett 36:L15605. doi:10.1029/2009GL038672

    Google Scholar 

  • Zhang R-H, Zheng F, Zhu J, Wang ZG (2013) A successful real-time forecast of the 2010–11 La Niña event. Sci Rep 3:1108. doi:10.1038/srep01108

    Google Scholar 

Download references

Acknowledgments

This work was stimulated by discussion with Prof. Fei-Fei Jin. We appreciate the comments and suggestions of two reviewers as well as Michelle L’Heureux, Hui Wang, Bohua Huang, and Caihong Wen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-Zhen Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, ZZ., Kumar, A., Xue, Y. et al. Why were some La Niñas followed by another La Niña?. Clim Dyn 42, 1029–1042 (2014). https://doi.org/10.1007/s00382-013-1917-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1917-3

Keywords

Navigation