Skip to main content

Advertisement

Log in

The Little Ice Age climate of New Zealand reconstructed from Southern Alps cirque glaciers: a synoptic type approach

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Little Ice Age (LIA) austral summer temperature anomalies were derived from palaeoequilibrium line altitudes at 22 cirque glacier sites across the Southern Alps of New Zealand. Modern analog seasons with temperature anomalies akin to the LIA reconstructions were selected, and then applied in a sampling of high-resolution gridded New Zealand climate data and global reanalysis data to generate LIA climate composites at local, regional and hemispheric scales. The composite anomaly patterns assist in improving our understanding of atmospheric circulation contributions to the LIA climate state, allow an interrogation of synoptic type frequency changes for the LIA relative to present, and provide a hemispheric context of the past conditions in New Zealand. An LIA summer temperature anomaly of −0.56 °C (±0.29 °C) for the Southern Alps based on palaeo-equilibrium lines compares well with local tree-ring reconstructions of austral summer temperature. Reconstructed geopotential height at 1,000 hPa (z1000) suggests enhanced southwesterly flow across New Zealand occurred during the LIA to generate the terrestrial temperature anomalies. The mean atmospheric circulation pattern for summer resulted from a crucial reduction of the ‘HSE’-blocking synoptic type (highs over and to the west of NZ; largely settled conditions) and increases in both the ‘T’- and ‘SW’-trough synoptic types (lows passing over NZ; enhanced southerly and southwesterly flow) relative to normal. Associated land-based temperature and precipitation anomalies suggest both colder- and wetter-than-normal conditions were a pervasive component of the base climate state across New Zealand during the LIA, as were colder-than-normal Tasman Sea surface temperatures. Proxy temperature and circulation evidence were used to corroborate the spatially heterogeneous Southern Hemisphere composite z1000 and sea surface temperature patterns generated in this study. A comparison of the composites to climate mode archetypes suggests LIA summer climate and atmospheric circulation over New Zealand was driven by increased frequency of weak El Niño-Modoki in the tropical Pacific and negative Southern Annular Mode activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Sea surface salinity (SSS) and SST changes are two important components that contribute to coral stable oxygen isotope records (Evans et al. 1998; Ren et al. 2002). This can make untangling SST and SSS signals challenging using just δ18O. However, both SST and SSS are commonly modulated by ENSO in the southwest Pacific (Cole et al. 1993; Tudhope et al. 1995; Quinn et al. 1998; Gagan et al. 2000; Linsley et al. 2004, 2006; Asami et al. 2005; Bagnato et al. 2005), which means past marine climate variability is often reported for Pacific coral δ18O records. While ENSO may be an important climate driver for the southwest Pacific and can be recorded in many sclerochronology-based archives (like corals, shells etc.), it is more important for this study that site-specific information about mean climate state rather than past climate driver information or past climate variability is compiled for comparative purposes. Therefore, we focus solely on the records within this proxy type that have provided an SSTa for the LIA.

References

  • Ackland JBA (1892) Early explorations at the headwaters of the Rangitata River. N Z Alp J 1:22–30

    Google Scholar 

  • Anderson B, Mackintosh A (2006) Temperature change is the major driver of late-glacial and Holocene glacier fluctuations in New Zealand. Geology 34:121. doi:10.1130/G22151.1

    Article  Google Scholar 

  • Asami R, Yamada T, Iryu Y, Quinn TM, Meyer CP, Paulay G (2005) Interannual and decadal variability of the western Pacific sea surface condition for the years 1787–2000: reconstruction based on stable isotope record from a Guam coral. J Geophys Res 110:C05018. doi:10.1029/2004JC002555

    Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:1–27. doi:10.1029/2006JC003798

    Google Scholar 

  • Ashok K, Iizuka S, Rao SA, Saji NH, Lee W-J (2009) Processes and boreal summer impacts of the 2004 El Niño Modoki: an AGCM study. Geophys Res Lett 36:L04703. doi:10.1029/2008GL036313

    Google Scholar 

  • Bacon SN, Chinn TJ, Van Dissen RJ et al (2001) Paleo-equilibrium line altitude estimates from late Quaternary glacial features in the Inland Kaikoura Range, South Island, New Zealand. NZ J Geol Geophys 44:55–67

    Article  Google Scholar 

  • Bagnato S, Linsley BK, Howe SS, Wellington GM, Salinger J (2005) Coral oxygen isotope records of interdecadal climate variations in the South Pacific Convergence Zone region. Geochem Geophys Geosyst 6:Q06001. doi:10.1029/2004GC000879

    Article  Google Scholar 

  • Boninsegna JA, Argollo J, Aravena JC et al (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeogr Palaeoclimatol Palaeoecol. Elsevier B.V. 281:210–228. doi:10.1016/j.palaeo.2009.07.020

    Google Scholar 

  • Bradley RS, Briffa K, Cole JE, Hughes MK, Osborne TJ (2003) The climate of the last millennium. In: Pedersen TF, Alverson K, Bradley RF (eds) Paleoclimate, global change and the future. pp 105–141

  • Cassou C (2008) Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation. Nature 455:523–527. doi:10.1038/nature07286

    Article  Google Scholar 

  • Chinn TJ (1996) New Zealand glacier responses to climate change of the past century. NZ J Geol Geophys 39:415–428

    Article  Google Scholar 

  • Chinn T, Fitzharris BB, Willsman A, Salinger MJ (2012) Annual ice volume changes 1976–2008 for the New Zealand Southern Alps. Global Planet Change 92–93:105–118

    Article  Google Scholar 

  • Ciasto LM, Thompson DWJ (2008) Observations of large-scale ocean-atmosphere interaction in the Southern Hemisphere. J Clim 21:1244–1259

    Article  Google Scholar 

  • Clare GR, Fitzharris BB, Chinn TJH, Salinger MJ (2002) Interannual variation in end-of-summer snowlines of the Southern Alps of New Zealand, and relationships with Southern Hemisphere atmospheric circulation and sea surface temperature patterns. Int J Climatol 22:107–120. doi:10.1002/joc.722

    Article  Google Scholar 

  • Cohen AL, Tyson PD (1995) Sea–surface temperature fluctuations during the Holocene off the south coast of Africa: implications for terrestrial climate and rainfall. The Holocene 5:304–312. doi:10.1177/095968369500500305

    Article  Google Scholar 

  • Cole JE, Fairbanks RG, Shen GT (1993) Recent variability in the southern oscillation: isotopic results from a Tarawa Atoll Coral. Science 260:1790–1793

    Article  Google Scholar 

  • Cook ER, Buckley BM, D’Arrigo RD, Peterson MJ (2000) Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree rings and their relationship to large-scale sea surface temperature anomalies. Clim Dyn 16:79–91. doi:10.1007/s003820050006

    Article  Google Scholar 

  • Cook ER, Palmer JG, D’Arrigo RD (2002) Evidence for a “Medieval Warm Period” in a 1, 100 year tree-ring reconstruction of past austral summer temperatures in New Zealand. Geophys Res Lett 29:1–4

    Google Scholar 

  • Cook ER, Buckley BM, Palmer JG et al (2006) Millennia-long tree-ring records from Tasmania and New Zealand: a basis for modelling climate variability and forcing, past, present and future. J Quat Sci 21:689–699. doi:10.1002/jqs

    Article  Google Scholar 

  • D’Arrigo RD, Buckley BM, Cook ER, Wagner WS, Arrigo RDD (1995) Temperature-sensitive tree-ring width chronologies of pink pine (Halocarpus biformis) from Stewart Island, New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 19:293–300

    Google Scholar 

  • D’Arrigo RD, Cook ER, Salinger MJ et al (1998) Tree-ring records from New Zealand: long-term context for recent warming trend. Clim Dyn 14:191–199. doi:10.1007/s003820050217

    Article  Google Scholar 

  • DeLong KL, Quinn TM, Taylor FW, Lin K, Shen C-C (2012) Sea surface temperature variability in the southwest tropical Pacific since AD 1649. Nat Clim Change. Nature Publishing Group 2:799–804. doi:10.1038/nclimate1583

    Google Scholar 

  • Dunbar R, Wellington GM, Colgan M, Glynn PW (1994) Eastern Pacific sea surface temperature since 1600 A. D’. The record of climate variability in Gahipagos corals we interpret. Paleoceanography 9:291–315

    Article  Google Scholar 

  • Ekaykin A, Lipenkov V, Kuzmina I, Petit J, Masson-Delmotte V, Johnsen S (2004) The changes in isotope composition and accumulation of snow at Vostok station, East Antarctica, over the past 200 years. Ann Glaciol 39:569–575

    Article  Google Scholar 

  • Evans MN, Fairbanks RG, Rubenstone JL (1998) A proxy index of ENSO teleconnections. Nature 394:732–733

    Article  Google Scholar 

  • Farmer EC, DeMenocal PB, Marchitto TM (2005) Holocene and deglacial ocean temperature variability in the Benguela upwelling region: implications for low-latitude atmospheric circulation. Paleoceanography 20:1–16. doi:10.1029/2004PA001049

    Article  Google Scholar 

  • Fitzharris BB, Hay JE, Jones PD (1992) The Holocene behaviour of New Zealand glaciers and atmospheric circulation changes over the past 130 years. Holocene 2:97–106. doi:10.1177/095968369200200201

    Google Scholar 

  • Fitzharris BB, Chinn TJ, Lamont GN (1997) Glacier balance fluctuations and atmospheric circulation patterns over the Southern Alps, New Zealand. Int J Climatol 17:745–763

    Article  Google Scholar 

  • Fitzharris BB, Clare GR, Renwick J (2007) Teleconnections between Andean and New Zealand glaciers. Global Planet Change 59:159–174. doi:10.1016/j.gloplacha.2006.11.022

    Article  Google Scholar 

  • Fogt RL, Bromwich DH, Hines KM (2011) Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim Dyn 36:1555–1576. doi:10.1007/s00382-010-0905-0

    Article  Google Scholar 

  • Folland CK, Salinger MJ (1995) Surface temperature trends and variations in New Zealand and the surrounding ocean, 1871–1993. Int J Climatol 15:1195–1218

    Article  Google Scholar 

  • Fowler AM, Boswijk G, Lorrey AM et al. (2012) Multi-centennial tree-ring record of ENSO-related activity in New Zealand. Nat Clim Change. Nature Publishing Group 2:1–5. doi:10.1038/nclimate1374

    Google Scholar 

  • Gagan MK, Ayli LK, Beck JW et al (2000) New views of tropical paleoclimates from corals. Quatern Sci Rev 19:45–64

    Article  Google Scholar 

  • Gellatly AF (1982) Holocene glacial activity in Mt Cook National Park, New Zealand: the use of multi-parameter dating techniques to define glacial moraine chronologies. PhD Thesis, Department of Botany, University of Canterbury

  • Goodwin ID, Harvey N (2008) Subtropical sea-level history from coral microatolls in the Southern Cook Islands, since 300 AD. Mar Geol 253:14–25. doi:10.1016/j.margeo.2008.04.012

    Article  Google Scholar 

  • Hendy EJ, Lough JM, Gagan MK (2003) Historical mortality in massive Porites from the central Great Barrier Reef, Australia: evidence for past environmental stress? Coral Reefs 22:207–215. doi:10.1007/s00338-003-0304-7

    Article  Google Scholar 

  • Hoelzle M, Chinn T, Stumm D, Paul F, Zemp M, Haeberli W (2007) The application of glacier inventory data for estimating past climate change effects on mountain glaciers: a comparison between the European Alps and the Southern Alps of New Zealand. Global Planet Change 56:69–82. doi:10.1016/j.gloplacha.2006.07.001

    Article  Google Scholar 

  • Huang S, Pollack H, Shen P (2000) Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature 403:756–758. doi:10.1038/35001556

    Article  Google Scholar 

  • Jiang N, Griffiths G, Lorrey A (2012) Influence of large-scale climate modes on daily synoptic weather types over New Zealand. Int J Climatol doi:10.1002/joc.3443

  • Kellerhals T, Brütsch S, Sigl M, Knüsel S, Gäggeler HW, Schwikowski M (2010) Ammonium concentration in ice cores: a new proxy for regional temperature reconstruction? J Geophys Res 115:D16123. doi:10.1029/2009JD012603

    Article  Google Scholar 

  • Kidson JW (2000) An analysis of New Zelaand synoptic types and their use in defining weather regimes. Int J Climatol 20:299–316

    Article  Google Scholar 

  • Kidston J, Renwick JA, McGregor J (2009) Hemispheric-scale seasonality of the southern annular mode and impacts on the climate of New Zealand. J Clim 22:4759–4770. doi:10.1175/2009JCLI2640.1

    Article  Google Scholar 

  • Kistler R, Collins W, Saha S et al (2001) The NCEP–NCAR 50–year reanalysis: monthly means CD–ROM and documentation. Bull Am Meteorol Soc 82(2):247–268

    Google Scholar 

  • L’Heureux ML, Thompson DWJ (2006) Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J Clim 19:276–287

    Article  Google Scholar 

  • Lamont GN, Chinn TJ, Fitzharris BB (1999) Slopes of glacier ELAs in the Southern Alps of New Zealand in relation to atmospheric circulation patterns. Global Planet Change 22:209–219. doi:10.1016/S0921-8181(99)00038-7

    Article  Google Scholar 

  • Lara A, Villalba R (1993) A 3620-year temperature record from Fitzroya cupressoides tree rings in southern South America. Science 260:1104–1106

    Article  Google Scholar 

  • Lee-Thorp JA, Holmgren K, Linge H et al (2001) Rapid climate shifts in the southern African interior throughout the mid to late Holocene. Geophys Res Lett 28:4507–4510

    Article  Google Scholar 

  • Linsley BKK, Wellington GM, Schrag DP, Ren L, Salinger MJ, Tudhope AW (2004) Geochemical evidence from corals for changes in the amplitude and spatial pattern of South Pacific interdecadal climate variability over the last 300 years. Clim Dyn 22:1–11. doi:10.1007/s00382-003-0364-y

    Article  Google Scholar 

  • Linsley BK, Kaplan A, Gouriou Y et al (2006) Tracking the extent of the South Pacific Convergence Zone since the early 1600 s. Geochem Geophys Geosyst 7:Q05003. doi:10.1029/2005GC001115

    Article  Google Scholar 

  • Linsley BK, Zhang P, Kaplan A, Howe SS, Wellington GM (2008) Interdecadal-decadal climate variability from multicoral oxygen isotope records in the South Pacific Convergence Zone region since 1650 A.D. Paleoceanography 23:PA2219. doi:10.1029/2007PA001539

  • Lorrey A, Fowler AM, Salinger J (2007) Regional climate regime classification as a qualitative tool for interpreting multi-proxy palaeoclimate data spatial patterns: a New Zealand case study. Palaeogeogr Palaeoclimatol Palaeoecol 253:407–433. doi:10.1016/j.palaeo.2007.06.011

    Article  Google Scholar 

  • Lorrey A, Williams P, Salinger J et al (2008) Speleothem stable isotope records interpreted within a multi-proxy framework and implications for New Zealand palaeoclimate reconstruction. Quatern Int 187:52–75. doi:10.1016/j.quaint.2007.09.039

    Article  Google Scholar 

  • Lorrey AM, Vandergoes M, Almond P et al. (2012) Palaeocirculation across New Zealand during the last glacial maximum at ∼ 21 ka. Quaternary Sci Rev. Elsevier Ltd 36:189–213. doi:10.1016/j.quascirev.2011.09.025

    Google Scholar 

  • Mann ME (2002) Little Ice Age. Encyclopedia of global environmental change volume 1, the earth system: physical and chemical dimensions of global environmental change. Wiley, New York, 504–509

  • Mann ME, Zhang Z, Rutherford S et al (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science (New York, N.Y.) 326:1256–60. doi:10.1126/science.1177303

  • Masiokas MH, Luckman BH, Villalba R, Delgado S, Skvarca P, Ripalta A (2009a) Little Ice Age fluctuations of small glaciers in the Monte Fitz Roy and Lago del Desierto areas, south Patagonian Andes, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol. Elsevier B.V. 281:351–362. doi:10.1016/j.palaeo.2007.10.031

  • Masiokas MH, Rivera A, Espizua LE, Villalba R, Delgado S, Aravena JC (2009b) Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeogr Palaeoclimatol Palaeoecol. Elsevier B.V. 281:42–268. doi:10.1016/j.palaeo.2009.08.006

    Google Scholar 

  • Mayewski PA, Maasch KA, White JWC et al (2005) A 700 year record of Southern Hemisphere extratropical climate variability. Ann Glaciol 39:127–132

    Article  Google Scholar 

  • Mckinzey KM, Lawson W, Kelly D (2004) A revised Little Ice Age chronology of the Franz Josef Glacier, Westland, New Zealand. J R Soc N Z 34:37–41

    Article  Google Scholar 

  • Meierding TC (1982) Late Pleistocene glacial equilibrium-line altitudes in the Colorado front range: a comparison of methods. Quatern Res 18:289–310

    Article  Google Scholar 

  • Mo K, Paegle J (2001) The Pacific-South American Modes and their downstream effects. Int J Climatol 21:1211–1229

    Article  Google Scholar 

  • Mullan A, Stuart SJ, Hadfield MG, Smith MJ (2010) Report on the review of NIWA’s “Seven-Station” Temperature series., p 175

  • Neukom R, Gergis J (2011) Southern Hemisphere high-resolution palaeoclimate records of the last 2000 years. The Holocene 22:501–524. doi:10.1177/0959683611427335

    Article  Google Scholar 

  • Orsi AJ, Cornuelle BD, Severinghaus JP (2012) Little Ice Age cold interval in West Antarctica: evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide. Geophys Res Lett 39:L09710. doi:10.1029/2012GL051260

    Article  Google Scholar 

  • Peel DA, Mulvaney RM, Pasteur EC, Chenery C (1996) Climate changes in the Atlantic sector of Antarctica over the past 500 years from ice-core and other evidence. In: Jones PD, Bradley RS, Jouzel J (ed) Climatic variations and forcing mechanisms of the last 2000 years. Springer, New York, pp 243–262

  • Purdie H, Mackintosh A, Lawson W, Anderson B, Morgenstern U, Chinn T, Mayewski P (2011) Interannual variability in net accumulation on Tasman Glacier and its relationship with climate. Global Planet Change 77:142–152

    Article  Google Scholar 

  • Putnam AE, Schaefer JM, Denton GH et al (2012) Regional climate control of glaciers in New Zealand and Europe during the pre-industrial Holocene. Nat Geosci. Nature Publishing Group 5:627–630. doi:10.1038/ngeo1548

  • Quinn TM, Crowley TJ, Taylor FW, Henin C, Joannot P, Join Y (1998) A multicentury stable isotope record from a New Caledonia coral: interannual and decadal sea surface temperature variability in the southwest Pacific since 1657 A.D. Paleoceanography 13:412–426

    Article  Google Scholar 

  • Rayner NA, Parker D, Horton E et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108. doi:10.1029/2002JD002670

  • Ren L, Linsley BK, Wellington GM, Schrag DP, Hoegh-Guldberg O (2002) Deconvolving the d18 O seawater component from subseasonal coral d 18 O and Sr / Ca at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997. Geochim Cosmochim Acta 67:1609–1621

    Article  Google Scholar 

  • Renwick JA (2011) Kidson’s synoptic weather types and surface climate variability over New Zealand. Weather Clim 31:3–23

    Google Scholar 

  • Rhodes RH, Bertler NAN, Baker JA et al (2012) Little Ice Age climate and oceanic conditions of the Ross Sea, Antarctica from a coastal ice core record. Clim Past 8:1223–1238. doi:10.5194/cp-8-1223-2012

    Article  Google Scholar 

  • Riddle EE, Stoner MB, Johnson NC, L’Heureux ML, Collins DC, Feldstein SB (2013) The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Clim Dyn 40(7–8):1749–1766. doi:10.1007/s00382-012-1493-y

    Google Scholar 

  • Russell A, McGregor GR, Marshall GJ (2006) 340 years of atmospheric circulation characteristics reconstructed from an eastern Antarctic Peninsula ice core. Geophys Res Lett 33(8). doi:10.1029/2006GL025899

  • Sachs JP, Sachse D, Smittenberg RH, Zhang Z, Battisti DS, Golubic S (2009) Southward movement of the Pacific intertropical convergence zone AD 1400–1850. Nat Geosci. Nature Publishing Group 2:519–525. doi:10.1038/ngeo554

    Google Scholar 

  • Schaefer JM, Denton GH, Kaplan M et al (2009) High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. Science (New York, N.Y.) 324:622–625. doi:10.1126/science.1169312

  • Sealy EP (1892) Glacier exploration. N Z Alp J 1:54–61

    Google Scholar 

  • Stenni B, Proposito M, Gragnani R et al (2002) Eight centuries of volcanic signal and climate change at Talos Dome (East Antarctica). 107. doi:10.1029/2000JD000317

  • Steig EJ, Morse DL, Waddington ED, Stuiver M, Grootes PM, Mayewski PA, Whitlow SI, Twickler MS (2000) Wisconsinan and holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica. Geografiska Annaler 82A:213–235

  • Tait A, Henderson R, Turner R, Zheng X (2006) Thin-plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface. Int J Climatol 26:2097–2115

    Article  Google Scholar 

  • Tait A, Sturman J, Clark M (2012) An assessment of the accuracy of interpolated daily rainfall for New Zealand. J Hydrol (NZ) 51:25–44

    Google Scholar 

  • Takahashi K, Battisti DS (2007) Processes controlling the Mean Tropical Pacific Precipitation Pattern. Part II: the SPCZ and the Southeast Pacific Dry Zone. J Clim 20:5696–5706. doi:10.1175/2007JCLI1656.1

    Article  Google Scholar 

  • Thompson L, Peel D, Mosley-Thompson E et al (1994) Climate since AD 1510 on Dyer Plateau, Antarctic Peninsula: evidence for recent climate change. Ann Glaciol 20:420–426

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Brecher H et al (2006) Abrupt tropical climate change: past and present. Proc Natl Acad Sci USA 103:10536–10543. doi:10.1073/pnas.0603900103

    Article  Google Scholar 

  • Tudhope AW, Shimmield GB, Chilcott CP, Jebb M, Fallick AE, Dalgleish AN (1995) Recent changes in climate in the far western equatorial Pacific and their relationship to the Southern Oscillation; oxygen isotope records from massive corals, Papua New Guinea. Earth Planet Sci Lett 136:575–590. doi:10.1016/0012-821X(95)00156-7

    Article  Google Scholar 

  • Tyson PD, Lindesay JA (1992) The climate of the last 2000 years in southern Africa. The Holocene 2:271–278. doi:10.1177/095968369200200310

    Article  Google Scholar 

  • Tyson PD, Sturman AP, Fitzharris BB, Mason SJ, Owens IF (1997) Circulation changes and teleconnections between glacial advances on the west coast of New Zealand and extended spells of drought years in South Africa. Int J Climatol 17:1499–1512. doi:10.1002/(SICI)1097-0088(19971130)17:14<1499:AID-JOC207>3.0.CO;2-O

    Article  Google Scholar 

  • Varma V, Prange M, Spangehl T, Lamy F, Cubasch U, Schulz M (2012) Impact of solar-induced stratospheric ozone decline on Southern Hemisphere westerlies during the Late Maunder Minimum. Geophys Res Lett 39:1–6. doi:10.1029/2012GL053403

    Google Scholar 

  • Villalba R, Cook ER, D’Arrigo R et al (1997) Sea-level pressure variability around Antarctica since A. D. 1750 inferred from subantarctic tree-ring records. Clim Dyn 13:375–390

    Article  Google Scholar 

  • Villalba R, Lara A, Boninsegna JA et al (2003) Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Clim Change 59:177–232

    Article  Google Scholar 

  • Villalba R, Lara A, Masiokas MH et al (2012) Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nat Geosci doi:10.1038/ngeo1613

  • Von Haast J (1879) Geology of the provinces of Canterbury and Westland. Times Offices, Christchurch, p 486

  • Weldeab S, Stuut J-BW, Schneider RR, Siebel W (2012) Holocene climate variability in the winter rainfall zone of South Africa. Clim Past Discuss 8:2281–2320. doi:10.5194/cpd-8-2281-2012

    Article  Google Scholar 

  • Whiteford P, Allis R, Funnel R (1996) Past surface temperatures from borehole temperature measurements. In: Salinger J (ed) Climate trends in Oceania. Auckland

  • Winkler S (2000) The “Little Ice Age” maximum in the Southern Alps, New Zealand: preliminary results at Mueller Glacier. The Holocene 10:643–647. doi:10.1191/095968300666087656

    Article  Google Scholar 

  • Xiao C, Mayewski PA, Qin D, Li Z, Zhang M, Yan Y (2004) Sea level pressure variability over the southern Indian Ocean inferred from a glaciochemical record in Princess Elizabeth Land, east Antarctica. J Geophys Res 109:D16101. doi:10.1029/2003JD004065

    Article  Google Scholar 

  • Zinke J, Dullo W-C, Heiss GA, Eisenhauer A (2004) ENSO and Indian Ocean subtropical dipole variability is recorded in a coral record off southwest Madagascar for the period 1659 to 1995. Earth Planet Sci Lett 228:177–194. doi:10.1016/j.epsl.2004.09.028

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by core funding NIWA receives from the government of New Zealand’s Ministry of Business, Industry and Enterprise as part of the ‘Climate Present and Past’ project. Additional support was provided by the Royal Society of New Zealand Marsden Fund (awarded to AML). Jonathan Palmer is thanked for providing the Oroko Swamp temperature reconstruction data. Trevor Chinn is thanked for discussing details of Southern Alps cirque glaciers. This work is a contribution from New Zealand to the PAGES AUS2 k effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Lorrey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 519 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorrey, A., Fauchereau, N., Stanton, C. et al. The Little Ice Age climate of New Zealand reconstructed from Southern Alps cirque glaciers: a synoptic type approach. Clim Dyn 42, 3039–3060 (2014). https://doi.org/10.1007/s00382-013-1876-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1876-8

Keywords

Navigation