Skip to main content

Advertisement

Log in

ENSO representation in climate models: from CMIP3 to CMIP5

Climate Dynamics Aims and scope Submit manuscript

Abstract

We analyse the ability of CMIP3 and CMIP5 coupled ocean–atmosphere general circulation models (CGCMs) to simulate the tropical Pacific mean state and El Niño-Southern Oscillation (ENSO). The CMIP5 multi-model ensemble displays an encouraging 30 % reduction of the pervasive cold bias in the western Pacific, but no quantum leap in ENSO performance compared to CMIP3. CMIP3 and CMIP5 can thus be considered as one large ensemble (CMIP3 + CMIP5) for multi-model ENSO analysis. The too large diversity in CMIP3 ENSO amplitude is however reduced by a factor of two in CMIP5 and the ENSO life cycle (location of surface temperature anomalies, seasonal phase locking) is modestly improved. Other fundamental ENSO characteristics such as central Pacific precipitation anomalies however remain poorly represented. The sea surface temperature (SST)-latent heat flux feedback is slightly improved in the CMIP5 ensemble but the wind-SST feedback is still underestimated by 20–50 % and the shortwave-SST feedbacks remain underestimated by a factor of two. The improvement in ENSO amplitudes might therefore result from error compensations. The ability of CMIP models to simulate the SST-shortwave feedback, a major source of erroneous ENSO in CGCMs, is further detailed. In observations, this feedback is strongly nonlinear because the real atmosphere switches from subsident (positive feedback) to convective (negative feedback) regimes under the effect of seasonal and interannual variations. Only one-third of CMIP3 + CMIP5 models reproduce this regime shift, with the other models remaining locked in one of the two regimes. The modelled shortwave feedback nonlinearity increases with ENSO amplitude and the amplitude of this feedback in the spring strongly relates with the models ability to simulate ENSO phase locking. In a final stage, a subset of metrics is proposed in order to synthesize the ability of each CMIP3 and CMIP5 models to simulate ENSO main characteristics and key atmospheric feedbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • AchutaRao K, Sperber K (2006) ENSO simulations in coupled ocean-atmosphere models: are the current models better? Clim Dyn 27:1–16

    Article  Google Scholar 

  • Barnett TP, Latif M, Kirk E, Roeckner E (1991) On ENSO physics. J Clim 4:487–515

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Capotondi A, Wittenberg A, Masina S (2006) Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Model 15:274–298

    Article  Google Scholar 

  • Chiang JC, Zebiak SE, Cane MA (2001) Relative roles of elevated heating and surface temperature gradients in driving anomalous surface winds over tropical oceans. J Atmos Sci 58:1371–1394

    Article  Google Scholar 

  • Collins M et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3(6):391–397. doi:10.1038/ngeo868

    Article  Google Scholar 

  • Dommenget D, Haase S, Bayr T, Frauen C (2013) Analysis of the slab ocean El Niño atmospheric feedbacks in observed and simulated ENSO dynamics. Clim Dyn (submitted)

  • Dufresne JL, et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteor Soc 106:447–462

    Article  Google Scholar 

  • Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:D06104. doi:10.1029/2007JD008972

    Google Scholar 

  • Guilyardi E (2006) El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:329–348

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A (2010) ENSO and tropical Pacific metrics for CMIP5. IPCC Expert meeting on Assessing and Combining Multi Model Climate Projections, Boulder, USA, January 2010

  • Guilyardi E et al (2004) Representing El Niño in coupled ocean–atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17:4623–4629

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang CZ, Capotondi A, van Oldenborgh GJ, Stockdale T (2009a) Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Am Met Soc 90:325–340

    Article  Google Scholar 

  • Guilyardi E, Braconnot P, Jin F–F, Kim ST, Kolasinski M, Li T, Musat I (2009b) Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718

    Article  Google Scholar 

  • Jiang JH et al (2012) Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J Geophys Res 117:D14105

    Article  Google Scholar 

  • Jin F–F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin F–F, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett 33:L23708. doi:10.1029/2006GL027221

    Article  Google Scholar 

  • Kim ST, Jin FF (2011) An ENSO stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models. Clim Dyn 36:1609–1627

    Article  Google Scholar 

  • Kim D, Kug J-S, Kang I-S, Jin F–F, Wittenberg AT (2008) Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Clim Dyn 31:213–226. doi:10.1007/s00382-007-0348-4

    Article  Google Scholar 

  • Leloup J, Lengaigne M, Boulanger J-P (2008) Twentieth century ENSO characteristics in the IPCC database. Clim Dyn 30(2–3):277–291. doi:10.1007/s00382-007-0284-3

    Article  Google Scholar 

  • Lengaigne M, Vecchi GA (2010) Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models. Clim Dyn 35:299–313

    Article  Google Scholar 

  • Lengaigne M, Boulanger J-P, Menkes C, Spencer H (2006) Influence of the seasonal cycle on the termination of El Niño events in a coupled general circulation model. J Clim 19:1850–1868

    Article  Google Scholar 

  • Lloyd J, Guilyardi E, Weller H, Slingo J (2009) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos Sci Lett 10:170–176

    Article  Google Scholar 

  • Lloyd J, Guilyardi E, Weller H (2011) The role of atmosphere feedbacks during ENSO in the CMIP3 models, Part II: using AMIP runs to understand the heat flux feedback mechanisms. Clim Dyn 37:1271–1292. doi:10.1007/s00382-010-0895

    Article  Google Scholar 

  • Lloyd J, Guilyardi E, Weller H (2012) The role of atmosphere feedbacks during ENSO in the CMIP3 models, Part III: the shortwave feedback. J Clim 25:4275–4293

    Article  Google Scholar 

  • Marti O, Braconnot P, Dufresne J-L, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubele A, Codron F et al (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34:1–26

    Article  Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1739–1745

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset. Bull Am Meteor Soc 88:1383–1394

    Article  Google Scholar 

  • Naylor RL, Battisti DS, Vimont DJ, Falcon WP, Burke MB (2007) Assessing risks of climate variability and climate change for indonesian rice agriculture. PNAS 104:7752–7757

    Article  Google Scholar 

  • Neale RB, Richter JH, Jochum M (2008) The impact of convection on ENSO: from a delayed oscillator to a series of events. J Clim 21(22):5904–5924. doi:10.1175/2008JCLI2244.1

    Article  Google Scholar 

  • Nichol J (1997) Bioclimatic impacts of the 1994 smoke haze event in Southeast Asia. Atmos Environ 31(8):1209–1219

    Article  Google Scholar 

  • Philander S, Gu D, Lambert G, Li T, Halpern D, Lau N-C, Pacanowski R (1996) Why the ITCZ is mostly north of the equator. J Clim 9:2958–2972

    Article  Google Scholar 

  • Rasmusson E, Carpenter T (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res (Atmos) 108:4407

    Article  Google Scholar 

  • Stevenson S, Fox-Kemper B, Jochum M, Rajagopalan B, Yeager SG (2010) ENSO model validation using wavelet probability analysis. J Clim 23(20):5540–5547. doi:10.1175/2010JCLI3609.1

    Article  Google Scholar 

  • Sun D-Z, Yu Y, Zhang T (2009) Tropical water vapor and cloud feedbacks in climate models: a further assessment using coupled simulations. J Clim 22:1287–1304

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) Overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498

    Article  Google Scholar 

  • Toniazzo T, Collins M, Brown J (2008) The variation of ENSO characteristics associated with atmospheric parameter perturbations in a coupled model. Clim Dyn 30:643–656

    Article  Google Scholar 

  • Uppala et al (2005) The ERA-40 Re-analysis. Q J R Meteor Soc 131:2961–3012

    Article  Google Scholar 

  • Van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi-model study. Ocean Sci 1:81–95

    Article  Google Scholar 

  • Vecchi GA, Wittenberg AT (2010) El Niño and our future climate: where do we stand? Wiley interdisciplinary reviews. Clim Change 1:260–270. doi:10.1002/wcc.33

    Google Scholar 

  • Wang B, An SI (2002) A mechanism for decadal changes of ENSO behavior: roles of background wind changes. Clim Dyn 18:475–486

    Article  Google Scholar 

  • Wang C, Picaut J (2004) Understanding ENSO physics: a review. Geophys Monogr AGU 147:21–48

    Google Scholar 

  • Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23(23):6312–6335. doi:10.1175/2010JCLI3679.1

    Article  Google Scholar 

  • Watanabe M, Chikira M, Imada Y, Kimoto M (2011) Convective control of ENSO simulated in MIROC. J Clim 24:543–562

    Article  Google Scholar 

  • Webster PJ, Magaña V, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability and the prospects for prediction. J Geophys Res 103:14451–14510

    Article  Google Scholar 

  • Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36:L12702. doi:10.1029/2009GL038710

    Article  Google Scholar 

  • Wittenberg AT, Rosati T, Held I (2003) ENSO in the GFDL coupled model. Eighth Annual CCSM Workshop, Breckenridge, CO, UCAR. Available online at http://www.gfdl.noaa.gov/atw/research/conf/ccsm8/talk.pdf

  • Wu X, Deng L, Song X, Vettoretti G, Peltier WR, Zhang GJ (2007) Impact of a modified convective scheme on the Madden-Julian oscillation and El Niño–Southern Oscillation in a coupled climate model. Geophys Res Lett 34:L16823. doi:10.1029/2007GL030637

    Article  Google Scholar 

  • Xie S-P (2005) The shape of continents, air-sea interaction, and the rising branch of the Hadley circulation. The Hadley circulation: present, past and future. In Diaz HF, Bradley RS (eds) Advances in global change research, vol 21. Kluwer Academic Publishers, pp 121–152

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteor Soc 78:2539–2558

    Article  Google Scholar 

  • Yu J-Y, Kim ST (2010) Identification of Central-Pacific and Eastern-Pacific types of ENSO in CMIP3 models. Geophys Res Lett 37:L15705

    Google Scholar 

  • Yu L, Weller RA (2007) Objectively Analyzed air-sea heat Fluxes for the global ice-free oceans (1981–2005). Bull Am Meteor Soc 88:527–539

    Article  Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Niño–Southern Oscillation. Mon Wea Rev 115:2262–2278

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from the European Union EUCLIPSE project (ENV/244067, FP7), the Agence Nationale pour la Recherche projects ANR-10-Blanc-616 METRO. We also acknowledge the CMIP3 and CMIP5 modelling groups, the ESG and PRODIGUER data distribution systems. We thank the two anonymous reviewers who helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bellenger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellenger, H., Guilyardi, E., Leloup, J. et al. ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42, 1999–2018 (2014). https://doi.org/10.1007/s00382-013-1783-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1783-z

Keywords

Navigation