Skip to main content

Advertisement

Log in

Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this study, we analysed decadal and long-term steric sea level variations over 1966–2007 period in the Indo-Pacific sector, using an ocean general circulation model forced by reanalysis winds. The simulated steric sea level compares favourably with sea level from satellite altimetry and tide gauges at interannual and decadal timescales. The amplitude of decadal sea level variability (up to ~5 cm standard deviation) is typically nearly half of the interannual variations (up to ~10 cm) and two to three times larger than long-term sea level variations (up to 2 cm). Zonal wind stress varies at decadal timescales in the western Pacific and in the southern Indian Ocean, with coherent signals in ERA-40 (from which the model forcing is derived), NCEP, twentieth century and WASWind products. Contrary to the variability at interannual timescale, for which there is a tendency of El Niño and Indian Ocean Dipole events to co-occur, decadal wind stress variations are relatively independent in the two basins. In the Pacific, those wind stress variations drive Ekman pumping on either side of the equator, and induce low frequency sea level variations in the western Pacific through planetary wave propagation. The equatorial signal from the western Pacific travels southward to the west Australian coast through equatorial and coastal wave guides. In the Indian Ocean, decadal zonal wind stress variations induce sea level fluctuations in the eastern equatorial Indian Ocean and the Bay of Bengal, through equatorial and coastal wave-guides. Wind stress curl in the southern Indian Ocean drives decadal variability in the south-western Indian Ocean through planetary waves. Decadal sea level variations in the south–western Indian Ocean, in the eastern equatorial Indian Ocean and in the Bay of Bengal are weakly correlated to variability in the Pacific Ocean. Even though the wind variability is coherent among various wind products at decadal timescales, they show a large contrast in long-term wind stress changes, suggesting that long-term sea level changes from forced ocean models need to be interpreted with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. ENSO and IOD years are taken from Ummenhoefer et al. (2009).

References

  • Alory G, Wijffels S, Meyers G (2007) Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys Res Lett 34(2):L02606

    Article  Google Scholar 

  • Anderson DLT, Gill AE (1975) Spin-up of a stratified ocean, with applications to upwelling. Deep Sea Res 22:583–596

    Google Scholar 

  • Antonov JI, Levitus S, Boyer TP (2002) Steric sea level variations during 1957–1994: importance of salinity. J Geophys Res 107(C12):8013

    Article  Google Scholar 

  • Barnier B, Madec G, Penduff T, Molines JM, Treguier AM, Le Sommer J, Beckmann A, Biastoch A, Böning C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean J, De Cuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution. J Ocean Dyn 56:543–567

    Article  Google Scholar 

  • Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Quéré C, Levitus S, Nojiri Y, Shum C, Talley L, Unnikrishnan A (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, chapter 5. Cambridge University press, Cambridge, pp 385–432

  • Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388

    Article  Google Scholar 

  • Brodeau L, Barnier B, Treguier A, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modell 31:88–104

    Article  Google Scholar 

  • Cai W, Hendon HH, Meyers G (2005a) An Indian Ocean dipole in the CSIRO coupled climate model. J Clim 18:1449–1468

    Article  Google Scholar 

  • Cai W, Meyers G, Shi G (2005b) Transmission of ENSO signal to the Indian Ocean. Geophys Res Lett 32:L05616

    Article  Google Scholar 

  • Cai W, Sullivan A, Cowan T (2008) Shoaling of the off-equatorial south Indian Ocean thermocline: is it driven by anthropogenic forcing? Geophys Res Lett 35:L12711

    Article  Google Scholar 

  • Carton JA, Giese BS, Grodsky SA (2005) Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J Geophys Res 110:C09006

    Article  Google Scholar 

  • Cazenave A, Nerem RS (2004) Present-day sea level change: observations and causes. Rev Geophys 42:RG3001

    Article  Google Scholar 

  • Chelton DB, Schlax MG (1996) Global observations of oceanic Rossby waves. Science 272:234–238

    Article  Google Scholar 

  • Cheng X, Qi Y, Zhou W (2008) Trends of sea level variations in the Indo-Pacific warm pool. Global Planet Change 63:57–66

    Article  Google Scholar 

  • Church JA, Godfrey JS, Jackett DR, McDougall TJ (1991) A model of sea level rise caused by ocean thermal expansion. J Clim 4:438–444

    Article  Google Scholar 

  • Clarke AJ (1991) On the reflection and transmission of low-frequency energy at the irregular western Pacific Ocean boundary. J Geophys Res 96:3289–3305

    Article  Google Scholar 

  • Clarke AJ, Liu X (1993) Observations and dynamics of semiannual and annual sea levels. J Phys Oceanogr 23:386–399

    Article  Google Scholar 

  • Clarke AJ, Liu X (1994) Interannual sea level in the northern and eastern Indian Ocean. J Geophys Res 99:1224–1235

    Article  Google Scholar 

  • Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on Loess. J Off Stat 6:3–73

    Google Scholar 

  • Compo GP et al (2011) The twentieth century reanalysis project. Q J Roy Meteorol Soc 137:1–28

    Article  Google Scholar 

  • Cravatte S, Picaut J, Eldin G (2003) Second and first baroclinic Kelvin modes in the equatorial Pacific at intraseasonal timescales. J Geophys Res 108(C8):3266. doi:10.1029/2002JC001511

    Google Scholar 

  • Cravatte S, Madec G, Izumo T, Menkes C, Bozec A (2007) Progress in the 3-D circulation of the eastern equatorial Pacific in a climate ocean model. Ocean Model 17:28–48

    Article  Google Scholar 

  • Durand F, Shankar D, Birol F, Shenoi SSC (2009) Spatio-temporal structure of the East India Coastal current from satellite altimetry. J Geophys Res 114:C02013

    Article  Google Scholar 

  • Feng M, Meyers G, Pearce A, Wijffels S (2003) Annual and interannual variations of the Leeuwin current at 32S. J Geophys Res 108(C11):3355

    Article  Google Scholar 

  • Feng M, Li Y, Meyers G (2004) Multi-decadal variations of Fremantle sea level: footprint of climate variability in the tropical Pacific. Geophys Res Lett 31:L16302

    Article  Google Scholar 

  • Feng M, Wijffels S, Godfrey S, Meyers G (2005) Do eddies play a role in the momentum balance of the Leeuwin Current? J Phys Oceanogr 35:964–975

    Article  Google Scholar 

  • Feng M, McPhaden MJ, Lee T (2010) Decadal variability of the Pacific subtropical cells and their influence on the southeast Indian Ocean. Geophys Res Lett 37:L09606

    Google Scholar 

  • Greatbatch RJ (1994) A note on the representation of steric sea level in models that conserve volume rather than mass. J Geophys Res 99:12767–12771

    Article  Google Scholar 

  • Gregory JM (1993) Sea level changes under increasing atmospheric CO2 in a transient coupled ocean-atmosphere GCM experiment. J Clim 6(12):2247–2262

    Article  Google Scholar 

  • Han W (2005) Origins and dynamics of the 90-day and 30–60-day variations in the equatorial Indian Ocean. J Phys Oceanogr 35:708–728

    Article  Google Scholar 

  • Han W, Meehl GA, Rajagopalan B, Fasullo JT, Hu A, Lin J, Large WG, Wang J, Quan XW, Trenary LL, Wallcraft A, Shinoda T, Yeager S (2010) Patterns of Indian Ocean sea level change in a warming climate. Nat Geosci 3:546–550

    Article  Google Scholar 

  • Harrison DE, Larkin NK (1998) El Niño-southern oscillation sea surface temperature and wind anomalies 1946–1993. Rev Geophys 36(3):353–399

    Article  Google Scholar 

  • Jackett DR, McDougall TJ (1995) Minimal adjustment of hydrographic profiles to achieve static stability. J Atmos Ocean Technol 12(4):381–389

    Article  Google Scholar 

  • Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmosph Sci 54:811–829

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Kashino Y, Espana N, Syamsudin F, Richards KJ, Jensen T, Dutrieux P, Ishida A (2009) Observations of the north equatorial current, Mindanao current and the Kuroshio current system during the 2006/07 El Nino and 2007/08 La Nina. J Oceanogr 65:325–333

    Article  Google Scholar 

  • Keerthi MG, Lengaigne M, Vialard J, Montegut CB, Muraleedharan PM (2012) Interannual variability of the tropical Indian Ocean mixed layer depth. Clim Dyn. doi:10.1007/s00382-012-1295-2

  • Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010) The international best track archive for climate stewardship (IBTrACS): unifying tropical cyclone best track data. Bull Am Meteorol Soc 91:363–376

    Article  Google Scholar 

  • Landerer FW, Jungclaus JH, Marotzke J (2008) El Nino–Southern Oscillation signals in sea level, surface mass redistribution, and degree-two geoid coefficients. J Geophys Res 113:C08014

    Article  Google Scholar 

  • Lee T, McPhaden MJ (2008) Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys Res Lett 35:L01605

    Article  Google Scholar 

  • Lengaigne M, Vecchi GA (2009) Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models. Clim Dyn 35:299–313

    Article  Google Scholar 

  • Lengaigne M, Madec G, Menkes C, Alory G (2003) Impact of isopycnal mixing on the tropical ocean circulation. J Geophys Res 108(C11):0148–0227

    Article  Google Scholar 

  • Lengaigne M, Boulanger JP, Menkes C, Spencer H (2006) Influence of the seasonal cycle on the termination of El Nino events in a coupled general circulation model. J Clim 19:1850–1868

    Article  Google Scholar 

  • Lengaigne M, Haussman U, Madec G, Menkes C, Vialard J, Molines JM (2012) Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes. Clim Dyn 38:1031–1046

    Article  Google Scholar 

  • Levitus S, Boyer TP, Conkright ME, O’Brien T, Antonov J, Stephens C, Stathoplos L, Johnson D, Gelfeld R (1998) NOAA Atlas NESDIS 18 and World ocean database, vol 1. U.S. Gov. Printing Office, Washington DC

    Google Scholar 

  • Llovel W, Guinehut S, Cazenave A (2010) Regional and interannual variability in sea level over 2002–2009 based on satellite altimetry, Argo float data and GRACE ocean mass. Ocean Dyn 60:1193–1204

    Article  Google Scholar 

  • Madec G (2008) “NEMO ocean engine”. Note du Pole de modélisation, vol 27. Institut Pierre-Simon Laplace (IPSL), France, pp 1288–1619

    Google Scholar 

  • Masumoto Y, Meyers G (1998) Forced Rossby waves in the southern tropical Indian Ocean. J Geophys Res 103:27589–27602

    Article  Google Scholar 

  • McCreary JP, Kundu PK, Molinari RL (1993) A numerical investigation of dynamics, thermodynamics and mixed layer processes in the Indian Ocean. Prog Oceanogr 31:181–244

    Article  Google Scholar 

  • McCreary JP, Han W, Shankar D, Shetye SR (1996) Dynamics of the east India coastal current 2. Numerical solutions. J Geophys Res 101:13993–14010

    Article  Google Scholar 

  • McPhaden MJ (1999) Genesis and evolution of the 1997–1998 El Nino. Science 283:950–954

    Article  Google Scholar 

  • McPhaden MJ, Zhang DX (2002) Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature 415:603–608

    Article  Google Scholar 

  • McPhaden MJ, Zhang D (2004) Pacific Ocean circulation rebounds. Geophys Res Lett 31(18):0094–8276

    Article  Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740

    Article  Google Scholar 

  • Meehl GA et al (2009a) Decadal prediction: can it be skillful? Bull Am Meteorol Soc 90:1467–1485

    Article  Google Scholar 

  • Meehl GA, Aixue H, Benjamin DS (2009b) The mid-1970s climate shift in the Pacific and the relative roles of forced versus Inherent decadal variability. J Clim 22(3):780

    Article  Google Scholar 

  • Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559

    Article  Google Scholar 

  • Meyers G (1996) Variation of the Indonesian through flow and the El Nino Southern Oscillation. J Geophys Res 101:12255–12263

    Article  Google Scholar 

  • Millero FJ, Poisson A (1981) International one-atmosphere equation of state of seawater. Deep-Sea Res 28:625–629

    Article  Google Scholar 

  • Mitas CM, Clement A (2005) Has the Hadley cell been strengthening in recent decades? Goephys Res Lett 32:L03809

    Article  Google Scholar 

  • Neelin D (1991) The slow sea surface temperature mode and the fast-wave limit: analytic theory for tropical interannual oscillations and experiments in an hybrid coupled model. J Atm Sci 48:584–606

    Article  Google Scholar 

  • Oliver ECJ, Thompson KR (2010) Madden-Julian Oscillation and sea level: local and remote forcing. J Geophys Res 115:C01003

    Article  Google Scholar 

  • Pattullo J, Munk W, Revelle R, Strong E (1955) The seasonal oscillation in sea level. J Mar Res 14:88–156

    Google Scholar 

  • Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7:952–956

    Article  Google Scholar 

  • Potemra JT (2001) Contribution of equatorial Pacific winds to southern tropical Indian Ocean Rossby waves. J Geophys Res 106:2407–2422

    Article  Google Scholar 

  • Potemra JT, Hautala SL, Sprintall J, Pandoe W (2002) Interaction between the Indonesian seas and the Indian Ocean in observations and numerical models. J Phys Oceanogr 32:1838–1854

    Article  Google Scholar 

  • Qiu B, Chen S (2006) Decadal variability in the large-scale sea surface height field of the south Pacific Ocean: observations and causes. J Phys Oceanogr 36:1751–1762

    Article  Google Scholar 

  • Rao AS, Behera SK (2005) Subsurface influence on SST in the tropical Indian ocean: structure and interannual variability. Dyn Atmos Oceans 39:103–135

    Article  Google Scholar 

  • Rao RR, Girish Kumar MS, Ravichandran M, Rao AR, Gopalakrishna VV, Thadathil P (2010) Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the Southeastern Arabian Sea during 1993–2006. Deep-Sea Res I 57:1–13

    Article  Google Scholar 

  • Roullet G, Madec G (2000) Salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models. J Geophys Res 105(C10):23927–23942

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Schwarzkopf FU, Böning CW (2011) Contribution of Pacific wind stress to multi-decadal variations in upper ocean heat content and sea level in the tropical south Indian Ocean. Geophys Res Lett 38:L12602. doi:10.1029/2011GL047651

    Article  Google Scholar 

  • Sengupta D, Senan R, Goswami BN, Vialard J (2007) Intraseasonal variability of equatorial Indian Ocean zonal currents. J Clim 20:3036–3055

    Article  Google Scholar 

  • Shankar D, Shetye SR (1999) Are interdecadal sea level changes along the Indian coast influenced by variability of monsoon rainfall? J Geophys Res 104:26031–26042

    Article  Google Scholar 

  • Sverdrup HU (1947) Wind driven currents in a baroclinic ocean, with application to the equatorial currents of the eastern Pacific. Proc Natl Acad Sci USA 33:318–326

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc. 93. doi:10.1175/BAMS-D-11-00094.1

  • Timmermann A, McGregor S, Jin FF (2010) Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J Climate 23:4429–4437

    Article  Google Scholar 

  • Tokinaga H, Xie SP (2011) Wave and anemometer-based sea surface wind (WASWind) for climate change analysis. J Climate 24:267–285

    Article  Google Scholar 

  • Tokinaga H, Xie SP, Timmermann A, McGregor S, Ogata T, Kubota H, Okumura YM (2012) Regional patterns of tropical Indo-Pacific climate change: evidence of the walker circulation weakening. J Climate 25:1689–1710

    Article  Google Scholar 

  • Tozuka T, Yokoi T, Yamagata T (2010) A modeling study of interannual variations of the Seychelles dome. J Geophys Res 115:C04005

    Article  Google Scholar 

  • Ummenhofer CC, England MH, McIntosh PC, Meyers GA, Pook MJ, Risbey JS, Gupta AS, Taschetto AS (2009) What causes southeast Australia’s worst droughts? Geophys Res Lett 36:L04706. doi:10.1029/2008GL036801

  • Unnikrishnan AS, Shankar D (2007) Are sea level-rise trends along the coasts of north Indian Ocean coasts consistent with global estimates? Global Planet Change 57:301–307

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Climate 20:4316–4340

    Article  Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76

    Article  Google Scholar 

  • Vialard J, Menkes C, Boulanger JP, Delecluse P, Guilyardi E, McPhaden M (2001) A model study of the oceanic mechanisms affecting the equatorial SST during the 1997–98 El Niño. J Phys Oceanogr 31:1649–1675

    Article  Google Scholar 

  • Vialard J, Shenoi SSC, McCreary JP, Shankar D, Durand F, Fernando V, Shetye SR (2009) Intraseasonal response of northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation. Geophys Res Lett 36:L14606

    Article  Google Scholar 

  • Vimont DJ (2005) The contribution of the interannual ENSO cycle to the spatial structure of decadal ENSO-like variability. J Climate 18:2080–2092

    Article  Google Scholar 

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled oceanic-atmospheric dynamics in the Indian Ocean during 1997–98. Nature 401:356–360

    Article  Google Scholar 

  • Wijffels S, Meyers G (2004) An intersection of oceanic wave guides: variability in the Indonesian throughflow region. J Phys Oceanogr 34:1232–1253

    Article  Google Scholar 

  • Wirth A, Willebrand J, Schott F (2002) Variability of the Great Whirl from observations and models. Deep-Sea Res II 49:1279–1295

    Article  Google Scholar 

  • Woodruff SD, Worley SJ, Lubker SJ, Ji Z, Freeman JE, Berry DI, Brohan P, Kent EC, Reynolds RW, Smith SR, Wilkinson C (2011) ICOADS release 2.5: extensions and enhancements to the surface marine meteorological archive. Int J Climatol 31:951–967

    Article  Google Scholar 

  • Woodworth PL, Player R (2003) The permanent service for mean sea level: an update to the 21st century. J Coastal Res 19:287–295

    Google Scholar 

  • Yin X, Gleason BE, Compo GP, Matsui N and Vose RS (2008) The International Surface Pressure Databank (ISPD) land component version 2.2. National Climatic Data Center: Asheville NC. Available from ftp://ftp.ncdc.noaa.gov/pub/data/ispd/doc/ISPD22.pdf

  • Yu B, Zwiers FW (2010) Changes in equatorial atmospheric zonal circulations in recent decades. Geophys Res Lett 37:L05701

    Google Scholar 

  • Yu W, Xiang B, Liu L, Liu N (2005) Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys Res Lett 32:L24706

    Article  Google Scholar 

  • Zhang C (2005) Madden-Julian Oscillation. Rev Geophys 43:RG2003

    Article  Google Scholar 

  • Zhang X, Church JA (2011) Linear trend of regional sea level change in the Pacific Ocean and its relationship with background decadal oscillation. Submitted to J Climate

  • Zhang D, McPhaden MJ (2006) Decadal variability of the shallow Pacific meridional overturning circulation: relation to tropical sea surface temperatures in observations and climate change models. Ocean Modell 15:250–273

    Article  Google Scholar 

  • Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109:1–27

    Google Scholar 

  • Zhang X, Lu Y, Thompson KR (2009) Sea level variations in the tropical pacific ocean and the Madden–Julian Oscillation. J Phys Oceanogr 39:1984–1992

    Article  Google Scholar 

Download references

Acknowledgments

The lead author is supported by financial assistance and research facilities of NIO-CSIR, India. The present work is a part of a project, funded by the Department of Science and Technology, Gov. of India. Jérôme Vialard and Matthieu Lengaigne are funded by Institut de Recherche pour le Développement (IRD) and did part of this work while visiting National Institute of Oceanography (NIO, India). The oceanic simulation in this paper was provided by the DRAKKAR project (www-meom.hmg.inpg.fr). The satellite altimeter products were produced by Ssalto/Duacs and distributed by AVISO, with support from Cnes (www.aviso.oceanobs.com). The tide-gauge data were made available through the Permanent Service for Mean Sea Level, PSMSL (www.psmsl.org). NCEP reanalysis data was provided by the NOAA/OAR/ESRL PSD, through their website at (www.esrl.noaa.gov). Support for the Twentieth Century Reanalysis Project dataset is provided by the U.S. DOE INCITE program, the Office of Biological and Environmental Research (BER), and by the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office. We thank Benjamin Hamlington for providing a long-term reconstruction of sea level data, that we chose not to include in this paper. This is NIO contribution number 5206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Nidheesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nidheesh, A.G., Lengaigne, M., Vialard, J. et al. Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Clim Dyn 41, 381–402 (2013). https://doi.org/10.1007/s00382-012-1463-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1463-4

Keywords

Navigation