Skip to main content

Advertisement

Log in

Examining evapotranspiration trends in Africa

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Surface temperatures are projected to increase 3–4°C over much of Africa by the end of the 21st century. Precipitation projections are less certain, but the most plausible scenario given by the Intergovernmental Panel on Climate Change (IPCC) is that the Sahel and East Africa will experience modest increases (~5%) in precipitation by the end of the 21st century. Evapotranspiration (Ea) is an important component of the water, energy, and biogeochemical cycles that impact several climate properties, processes, and feedbacks. The interaction of Ea with climate change drivers remains relatively unexplored in Africa. In this paper, we examine the trends in Ea, precipitation (P), daily maximum temperature (Tmax), and daily minimum temperature (Tmin) on a seasonal basis using a 31 year time series of variable infiltration capacity (VIC) land surface model (LSM) Ea. The VIC model captured the magnitude, variability, and structure of observed runoff better than other LSMs and a hybrid model included in the analysis. In addition, we examine the inter-correlations of Ea, P, Tmax, and Tmin to determine relationships and potential feedbacks. Unlike many IPCC climate change simulations, the historical analysis reveals substantial drying over much of the Sahel and East Africa during the primary growing season. In the western Sahel, large increases in daily maximum temperature appear linked to Ea declines, despite modest rainfall recovery. The decline in Ea and latent heating in this region could lead to increased sensible heating and surface temperature, thus establishing a possible positive feedback between Ea and surface temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen CD et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Anyamba A, Eastman JR (1996) Interannual variability of NDVI over Africa and its relation to El Nino/Southern Oscillation. Int J Remote Sens 17:2533–2548

    Article  Google Scholar 

  • Berg AA et al (2003) Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes. J Geophys Res 108:4490

    Article  Google Scholar 

  • Betts AK et al (1997) Assessment of the land surface and boundary layer models in two operational versions of the NCEP Eta model using FIFE data. Mon Weather Rev 125:2896–2916

    Article  Google Scholar 

  • Biasutti M et al (2008) SST forcings and Sahel rainfall variability in simulations of the twentieth and twenty-first centuries. J Clim 21:3471–3486

    Article  Google Scholar 

  • Bonan GB (1996) A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user’s guide. NCAR, Boulder, CO

    Google Scholar 

  • Bonan GB (1998) The land surface climatology of the NCAR land surface model coupled to the NCAR community climate model. J Clim 11:1307–1326

    Article  Google Scholar 

  • Bontemps S et al (2010) GlobCover 2009: products description and validation report. Université catholique de Louvain, Louvain-la-Neuve, Belgium

    Google Scholar 

  • Boone A (2011) Land cover influences on temperature, precipitation, and evapotranspiration in the Sahel. In: Marshall M (ed) (personal communication), Santa Barbara, CA

  • Brown ME, de Beurs KM (2008) Evaluation of multi-sensor semi-arid crop season parameters based on NDVI and rainfall. Remote Sens Environ 112:2261–2271

    Article  Google Scholar 

  • Brown ME, Funk C (2008) Food security under climate change. Science 319:580–581

    Article  Google Scholar 

  • Buckley TN (2005) The control of stomata by water balance. New Phytol 168:275–292

    Google Scholar 

  • Camberlin P et al (2007) Determinants of the interannual relationships between remote sensed photosynthetic activity and rainfall in tropical Africa. Remote Sens Environ 106:199–216

    Article  Google Scholar 

  • Chen F et al (1996) Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J Geophys Res 101:2896–2916

    Google Scholar 

  • Chen F et al (1997) Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Boundary Layer Meteorol 85:391–421

    Article  Google Scholar 

  • Cherkauer KA et al (2003) Variable infiltration capacity cold land process model updates. Global Planet Change 38:151–159

    Article  Google Scholar 

  • Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic Meridional Modes of tropical atmosphere-ocean variability. J Clim 17:4143–4158

    Article  Google Scholar 

  • Christensen JH et al (2007) Regional climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis/contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, NY, pp 847–940

    Google Scholar 

  • Cook BI et al (2006) Soil moisture feedbacks to precipitation in Southern Africa. J Clim 19:4198–4206

    Article  Google Scholar 

  • Dai A (2010) Drought under global warming: a review. Wiley Interdiscip Rev Clim Change. doi:10.1002/wcc.1081

  • Dai Y, Zeng Q (1997) A land surface model (IAP94) for climate studies part I: formulation and validation in off-line experiments. Adv Atmos Sci 14:433–460

    Article  Google Scholar 

  • Dai Y et al (2003) The common land model. Bull Am Meteorol Soc 84:1013–1023

    Article  Google Scholar 

  • De Bie S et al (1998) Woody plant phenology in the West Africa savanna. J Biogeogr 25:883–900

    Article  Google Scholar 

  • DehghaniSanij H et al (2004) Assessment of evapotranspiration estimation models for use in semi-arid environments. Agric Water Manage 64:91–106

    Article  Google Scholar 

  • Derber JC et al (1991) The new global operational analysis system at the national meteorological center. Weather Forecast 6:538–547

    Article  Google Scholar 

  • Dickenson RE et al (1986) Biosphere-atmosphere transfer scheme (BATS) for the NCAR community climate model. National Center for Atmospheric Research, Boulder

    Google Scholar 

  • Dickinson RE et al (2006) The community land model and its climate statistics as a component of the community climate system model. J Clim 19:2302–2324

    Article  Google Scholar 

  • Douville H (2002) Influence of soil moisture on the Asian and African monsoons. Part II: interannual variability. J Clim 15:701–720

    Article  Google Scholar 

  • Ducoudre NI et al (1993) SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD atmospheric general circulation model. J Clim 6:248–273

    Article  Google Scholar 

  • Ek MB et al (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108:8851

    Article  Google Scholar 

  • FAO (2010) Global forest resources assessment 2010: main report. Rome, Italy

  • Fischer EM et al (2007) Soil moisture-atmosphere interactions during the 2003 European summer heat wave. J Clim 20:5081–5099

    Article  Google Scholar 

  • Fisher JB et al (2008) Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens Environ 112:901–919

    Article  Google Scholar 

  • Fisher JB et al (2009) The land-atmosphere water flux in the tropics. Glob Change Biol 15:2694–2714

    Article  Google Scholar 

  • Funk C, Michaelsen J, Marshall M (2011) Mapping recent decadal climate variations in Eastern Africa and the Sahel. In: Anderson M, Verdin J (eds) Remote sensing of drought: innovative monitoring approaches. Taylor and Francis, London, p 270

  • Giannini A et al (2003) Oceanic forcing of sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030

    Article  Google Scholar 

  • Giannini A et al (2008) A climate model-based review of drought in the Sahel: desertification, the re-greening and climate change. Global Planet Change 64:119–128

    Article  Google Scholar 

  • Hagos SM, Cook KH (2008) Ocean warming and late-twentieth-century sahel drought and recovery. J Clim 21:3797–3814

    Article  Google Scholar 

  • Herrmann SM et al (2005) Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob Environ Change Part A 15:394–404

    Article  Google Scholar 

  • Heumann BW et al (2007) AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens Environ 108:385–392

    Article  Google Scholar 

  • Hoerling M et al (2009) Regional precipitation trends: distinguishing natural variability from anthropogenic forcing. J Clim 23:2131–2145

    Article  Google Scholar 

  • Hogue TS et al (2005) Evaluation and transferability of the Noah land surface model in semiarid environments. J Hydrometeorol 6:68–84

    Article  Google Scholar 

  • Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95

    Article  Google Scholar 

  • Huth R, Pokorná L (2004) Parametric versus non-parametric estimates of climatic trends. Theor Appl Climatol 77:107–112

    Article  Google Scholar 

  • Idso SB (1981) A set of equations for full spectrum and 8- to 14 micrometer and 10.5- to 12.5 micrometer thermal radiation from cloudless skies. Water Resour Res 17:295–304

    Article  Google Scholar 

  • Jacquemin B, Noilhan J (1990) Sensitivity study and validation of a land surface parameterization using the HAPEX-MOBILHY data set. Boundary Layer Meteorol 52:93–134

    Article  Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc B-Biol Sci 273:593–610

    Article  Google Scholar 

  • Jung M et al (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:951–954

    Google Scholar 

  • Koren V et al (1999) A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J Geophys Res 104:19569–19585

    Article  Google Scholar 

  • Koster RD et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140

    Article  Google Scholar 

  • Koster RD et al (2006) GLACE: the global land-atmosphere coupling experiment. Part I: overview. J Hydrometeorol 7:590–610

    Article  Google Scholar 

  • Law BE et al (2002) Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric For Meteorol 113:97–120

    Article  Google Scholar 

  • Lebel T, Ali A (2009) Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J Hydrol 375(1–2):52–64

    Article  Google Scholar 

  • Lee J, Pielke RA (1992) Estimating the soil surface specific humidity. J Appl Meteorol 31:480–484

    Article  Google Scholar 

  • Liang X, Xie Z (2001) A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models. Adv Water Resour 24:1173–1193

    Article  Google Scholar 

  • Liang X et al (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res 99:14415–14428

    Article  Google Scholar 

  • Liang X et al (1996a) One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J Geophys Res 101:21403–21422

    Article  Google Scholar 

  • Liang X et al (1996b) Surface soil moisture parameterization of the VIC-2L model: evaluation and modification. Global Planet Change 13:195–206

    Article  Google Scholar 

  • Liang X et al (1999) Modeling ground heat flux in land surface parameterization schemes. J Geophys Res 104:9581–9600

    Article  Google Scholar 

  • Llovel W, Becker M, Cazenave A, Cretaux JF, Ramillien G (2010) Global land water storage change from GRACE over 2002–2009; Inference on sea level. C R Geosci 342:179–188

    Article  Google Scholar 

  • Lobell DB, Burke MB (2010) On the use of statistical models to predict crop yield responses to climate change. Agric For Meteorol 150:1443–1452

    Article  Google Scholar 

  • Mahfouf JF, Noilhan J (1991) Comparative study of various formulations of evaporations from bare soil using in situ data. J Appl Meteorol 30:1354–1365

    Article  Google Scholar 

  • Marshall M et al (2011) Combining surface reanalysis and remote sensing data for monitoring evapotranspiration in sub-Saharan Africa. Hydrol and Earth Syst Sci (in review)

  • Milly PCD, Cazenave A, Gennero MC (2003) Contribution of climate-driven change in continental water storage to recent sea-level rise. Proc Natl Acad Sci 100:13158–13161

    Article  Google Scholar 

  • Minobe S (2005) Year-to-year variability in the Hadley and Walker circulations from NCEP/NCAR reanalysis data. Kluwer Academic Publishers, Amsterdam, Netherlands

    Google Scholar 

  • Morton FI (1983) Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J Hydrol 66:1–76

    Article  Google Scholar 

  • Nagol JR et al (2009) Effects of atmospheric variation on AVHRR NDVI data. Remote Sens Environ 113:392–397

    Article  Google Scholar 

  • Nicholson SE et al (1990) A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Clim Change 17:209–241

    Article  Google Scholar 

  • Nijssen B et al (2001a) Predicting the discharge of global rivers. J Clim 14:3307–3323

    Article  Google Scholar 

  • Nijssen B et al (2001b) Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. J Clim 14:1790–1808

    Article  Google Scholar 

  • Pedelty J et al (2007) Generating a long-term land data record from the AVHRR and MODIS instruments. Paper presented at IGARSS. IEEE international in geoscience and remote sensing symposium

  • Philip JR (1957) The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Sci 84:257–264

    Google Scholar 

  • Philippon N et al (2007) Characterization of the interannual and intraseasonal variability of West African vegetation between 1982 and 2002 by means of NOAA AVHRR NDVI data. J Clim 20:1202–1218

    Article  Google Scholar 

  • Qian T et al (2006) Simulation of global land surface conditions from 1948 to 2004. Part I: forcing data and evaluations. J Hydrometeorol 7:953–975

    Article  Google Scholar 

  • Rodell M et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394

    Article  Google Scholar 

  • Rosero E et al (2009) Evaluating enhanced hydrological representations in NOAH LSM over transition zones: implications for model development. J Hydrometeorol 10:600–622

    Article  Google Scholar 

  • Sellers PJ et al (1996a) A revised land surface parameterization (SiB2) for atmospheric GCMS. Part II: the generation of global fields of terrestrial biophysical parameters from satellite data. J Clim 9:706–737

    Article  Google Scholar 

  • Sellers PJ et al (1996b) A revised land surface parameterization (SiB2) for atmospheric GCMS. Part I: model formulation. J Clim 9:676–705

    Article  Google Scholar 

  • Shapiro R (1987) A simple model for the calculation of the flux of direct and diffuse solar radiation through the atmosphere. Air Force Geophysics Lab, Hanscom AFB, MA

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Tucker C et al (2005) An extended AVHRR 8 km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498

    Article  Google Scholar 

  • Verdin KL, Verdin JP (1999) A topological system for delineation and codification of the Earth’s river basins. J Hydrol 218:1–12

    Article  Google Scholar 

  • Vrieling A et al (2011) Variability of African farming systems from phenological analysis of NDVI time series. Clim Change. doi:10.1007/s10584-011-0049-1

  • Wang G, Eltahir EAB (2000) Ecosystem dynamics and the Sahel Drought. Geophys Res Lett 27:795–798

    Article  Google Scholar 

  • Wang A et al (2008) Integration of the variable infiltration capacity model soil hydrology scheme into the community land model. J Geophys Res 113:D09111

    Article  Google Scholar 

  • Wilks DS (1995) Statistical methods in the atmospheric sciences—an introduction. Academic Press, Inc., San Diego, CA

    Google Scholar 

  • Williams A, Funk C (2010) A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Clim Dyn 37:2417–2435

    Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Xue Y et al (2010) Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon modeling and evaluation project (WAMME) first model intercomparison experiment. Clim Dyn 35:3–27

    Article  Google Scholar 

  • Zeng N (2003) Drought in the Sahel. Science 302:999–1000

    Article  Google Scholar 

  • Zeng N, Neelin JD (2000) The role of vegetation-climate interaction and interannual variability in shaping the African Savanna. J Clim 13:2665–2670

    Article  Google Scholar 

  • Zeng N et al (1999) Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 286:1537–1540

    Article  Google Scholar 

  • Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Marshall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, M., Funk, C. & Michaelsen, J. Examining evapotranspiration trends in Africa. Clim Dyn 38, 1849–1865 (2012). https://doi.org/10.1007/s00382-012-1299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1299-y

Keywords

Navigation