Skip to main content

Advertisement

Log in

Impact of ice sheet induced North Atlantic oscillation on East Asian summer monsoon during an interglacial 500,000 years ago

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Marine Isotope Stage (MIS) 13, an interglacial about 500,000 years ago, is unique due to an exceptionally strong East Asia summer monsoon (EASM) occurring in a relatively cool climate with low greenhouse gas concentrations (GHG). This paper attempts to find one of the possible mechanisms for this seeming paradox. Simulations with an Earth System model LOVECLIM show that the presence of ice sheets over North America and Eurasia during MIS-13 induces a positive phase of the winter North Atlantic Oscillation (NAO) like feature. The ocean having a longer memory than the atmosphere, the oceanic anomalies associated with NAO persists until summer. The signals of summer NAO are transmitted to East Asia to reinforce the monsoon there through the stationary waves excited at the Asian Jet entrance. The geopotential height shows clearly a mid-latitude wave train with positive anomalies over the eastern Mediterranean/Caspian Sea and the Okhotsk Sea and a negative anomaly over Lake Baikal. This reinforces the effect of the high-latitude wave train induced independently by the Eurasian ice sheet topography as shown in previous study. These features reinforce the Meiyu front and enhance the precipitation over East Asia. The results obtained from LOVECLIM are further confirmed by an atmospheric general circulation model, ARPEGE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • An ZS et al (1991) Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quaternary Res 36:29–36

    Article  Google Scholar 

  • Berger A (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35(12):2362–2367

    Article  Google Scholar 

  • Chen FH, Bloemendal J, Zhang PZ, Liu GX (1999) An 800 ky proxy record of climate from lake sediments of the Zoige Basin, eastern Tibetan Plateau. Palaeogeogr Palaeoclimatol Paleoecol 151:307–320

    Article  Google Scholar 

  • Deser C, Walsh JE, Timlin MS (2000) Arctic sea ice variability in the context of recent atmospheric circulation trends. J Clim 13:617–633

    Article  Google Scholar 

  • Ding YH (1991) Monsoon over China. Kluwer Academic Pub., p 419

  • Ding YH (2004) Seasonal March of the East Asian summer monsoon. In: Chang CP (ed) The East Asian monsoon. World Science, Singapore, pp 3–53

    Chapter  Google Scholar 

  • Ding YH, Chan J (2005) The East Asian summer monsoon: an overview. Meteorol Atmos Phys 89:117–142. doi:10.1007/s00703-005-0125-z

    Article  Google Scholar 

  • Ding YH, Sikka DR (2006) Synoptic systems and weather. In: Wang B (ed) The Asian monsoon. Springer, New York, pp 131–201

    Chapter  Google Scholar 

  • Ding Q, Wang B (2005) Circumglobal teleconnection in the Northern Hemisphere summer. J Clim 18:3483–3505. doi:10.1175/JCLI3473.1

    Article  Google Scholar 

  • Ding Q, Wang B (2007) Intraseasonal teleconnection between the Eurasian wave train and The Indian monsoon. J Clim 20:3751–3767

    Article  Google Scholar 

  • Ding Q, Wang B, Wallace JM, Branstator G (2011) Tropical—extratropical teleconnections in boreal summer: observed interannual variability. J Clim 24:1878–1896. doi:10.1175/2011JCLI3621.1

    Article  Google Scholar 

  • Douville H, Bielli S, Cassou C, Deque M, Hall NMJ, Tyteca S, Voldoire A (2011) Tropical influence on boreal summer mid-latitude stationary waves. Clim Dyn. doi:10.1007/s00382-011-0997-1

  • Garric G, Douville H, Déqué M (2002) Prospects for improved seasonal forecasts of monsoon precipitation over Sahel. Int J Climatol 22:331–345

    Article  Google Scholar 

  • Goosse H (2010) Description of the earth system model of intermediate complexity LOVECLIM version 1.2. Geosci Model Dev 3:309–390. doi:10.5194/gmdd-3-309-2010

  • Grose WL, Hoskins BJ (1979) On the influence of orography on large-scale atmospheric flow. J Atmos Sci 36:223–234

    Article  Google Scholar 

  • Guan Z, Yamagata T (2003) The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys Res Lett. doi:10.1029/2002GL016831

  • Guo ZT, Liu TS, Fedoroff N, Wei LY, Ding ZL, Wu NQ, Lü HY, Jiang WY, An ZS (1998) Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic. Global Planet Change 18:113–128

    Article  Google Scholar 

  • Guo ZT, Berger A, Yin QZ, Qin L (2009) Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Clim Past 5:21–31

    Article  Google Scholar 

  • Hoskins BJ, Simmons AJ, Andrews DG (1977) Energy dispersion in a barotropic atmosphere. Q J R Meteorol Soc 103:553–567

    Google Scholar 

  • Hsu HH, Lin SM (2007) Asymmetry of the tripole rainfall pattern during the East Asian summer. J Clim 20:4443–4458

    Article  Google Scholar 

  • Hsu HH, Liu X (2003) Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall. Geophys Res Lett 30:2066. doi:10.1029/2003GL017909

    Article  Google Scholar 

  • Hu ZZ, Latif M, Roeckner E, Bengtsson L (2000) Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geophys Res Lett 27(17):2681–2684

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • IPCC Climate Change 2007 (2007) “The physical science basis”, summary for policymakers, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change

  • Jouzel J et al (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839):793–796

    Article  Google Scholar 

  • Kriplani RH, Oh JH, Kang JH, Sabade SS, Kulkarni A (2005) Extreme monsoons over East Asia: possible role of Indian Ocean zonal mode. Theor Appl Climatol 82:81–94

    Article  Google Scholar 

  • Kukla G, An ZS, Melice JL, Gavin J, Xiao JL (1990) Magnetic susceptibility record of Chinese loess. Trans R Soc Edinb Earth Sci 81:263–288

    Article  Google Scholar 

  • Li F, Ding YH (2004) A statistical study of blocking highs in Eurasia in summer by using 30 year NCEP datasets (in Chinese). Acta Meteorol Sin 62:347–354

    Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A pliocene-pleistocene stack of 57 globally distributed benthic delta δ 18 O records. Paleoceanography 20(1): PA1003. doi:10.1029/2004PA001071

  • Manabe S, Broccoli AJ (1985) The influence of continental ice sheets on the climate of an ice age. J Geophys Res 90:2167–2190

    Article  Google Scholar 

  • Météo-France (2003) ARPEGE-Climate version4. Algorithmic documentation. Center National de Recherches Meteorologiques

  • Ogi M, Tachibana Y, Yamazaki K (2003) Impact of the wintertime North Atlantic Oscillation (NAO) on the summertime atmospheric circulation. Geophys Res Lett 30(13):1704. doi:10.1029/2003GL017280

    Google Scholar 

  • Overpeck J, Anderson D, Trumbore S, Prell W (1996) The southwest Indian monsoon over the last 18,000 years. Clim Dynm 12:213–225

    Article  Google Scholar 

  • Peng S, Robinson WA, Li S (2002) North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys Res Lett 29:1276. doi:10.1029/2001GL014043

    Article  Google Scholar 

  • Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the Wintertime North Atlantic Oscillation and European climate. Nature 398:320–323

    Article  Google Scholar 

  • Rossignol-Strick M, Paterne M, Bassinot FC, Emeis KC, De Lange GJ (1998) An unusual mid-pleistocene monsoon period over Africa and Asia. Nature 392:269–272

    Article  Google Scholar 

  • Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady idealised tropical divergence. J Atmos 45:1228–1251

    Article  Google Scholar 

  • Sirocko F, Sarnthein M, Lange H, Erlenkeuser H (1991) Atmospheric summer circulation and coastal upwelling in the Arabian Sea during the Holocene and the last glaciation. Quat Res 36:72–93

    Article  Google Scholar 

  • Sun JQ, Wang HJ, Yuan W (2008) Decadal variations of the relationship between the summer North Atlantic oscillation and Middle East Asian air temperature. J Geophys Res 113:D15107. doi:10.1029/2007JD009626

    Article  Google Scholar 

  • Sung MK, Kwon WT, Baek HJ, Boo KO, Lim GH, Kug JS (2006) A possible impact of the North Atlantic oscillation on the East Asian summer monsoon precipitation. Geophys Res Lett 33:L21713. doi:10.1029/2006GL027253

    Article  Google Scholar 

  • Takeaki S, Xie SP (2010) Large-scale dynamics of the meiyu-baiu rainband: environmental forcing by the westerly jet. J Clim 23:113–134

    Article  Google Scholar 

  • Tao S, Chen L (1987) A review of recent research on the East Asian summer monsoon in China. In: Chang CP, Krishnamurti TN (eds) Monsoon meteorology, Oxford monographs on geology and geophysics. Oxford University Press, New York, pp 60–92

    Google Scholar 

  • Vernekar AD, Shukla J (1995) The effect of Eurasian snow cover on the Indian monsoon. J Clim 8:248–266

    Article  Google Scholar 

  • Wang Y(1992) Effects of blocking anticyclones in Eurasia in the rainy season (Meiyu/Baiu season). J Meteor Soc Jpn 70:929–951

    Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang B, Wu Z, Li J, Liu J, Chang CP, Ding Y, Wu G (2008) How to measure the strength of the East Asian summer monsoon? J Clim 21:4449–4463. doi:10.1175/2008JCLI2183.1

    Article  Google Scholar 

  • Watanabe M (2004) Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J Clim 17:4469–4674. doi:10.1175/JCLI-3228.1

    Google Scholar 

  • Wu R (2002) A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoons. Int J Clim 22:1879–1895. doi:10.1002/joc.845

    Article  Google Scholar 

  • Wu Z, Wang B, Li J, Jin FF (2009) An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J Geophys Res 114:D18120. doi:10.1029/2009JD011733

    Article  Google Scholar 

  • Yin QZ, Guo ZT (2006) Mid-Pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon. Chin Sci Bull 51(2):213–220

    Google Scholar 

  • Yin QZ, Guo ZT (2008) Strong summer monsoon during the cool MIS-13. Clim Past 4:29–34

    Article  Google Scholar 

  • Yin QZ, Berger A, Driesschaert E, Goosse H, Loutre MF, Crucifix M (2008) The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500,000 years ago. Clim Past 4:79–90

    Article  Google Scholar 

  • Yin QZ, Berger A, Crucifix M (2009) Individual and combined effects of ice sheets and precession on MIS-13 climate. Clim Past 5:229–243

    Article  Google Scholar 

  • Zhang QY, Tao SY (1998) Influence of Asian mid-high latitude circulation on East Asian summer rainfall. Acta Meteorol Sin 56:1211–1999

    Google Scholar 

  • Zhang RH, Sumi A, Kimoto M (1999) A diagnostic study of the impact of El Niño on the precipitation in China. Adv Atmos Sci 16:229–241

    Article  Google Scholar 

  • Zhou T et al (2009) Why the western pacific subtropical high has extended westward since the late 1970s. J Clim 22:2199–2215. doi:10.1175/2008JCLI2527.1

    Article  Google Scholar 

Download references

Acknowledgments

This work, as well as S. Sundaram and H. Muri, are supported by the European Research Council Advanced Grant EMIS (No 227348 of the Programme ‘Ideas’). Q. Z. Yin. is supported by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). Many thanks to Masahiro Watanabe, Atmosphere and Ocean Research Institute, University of Tokyo for the fruitful discussions. Authors wish to acknowledge and thank David Salas y Mélia and Aurore Voldoire from CNRM-GAME-Météo France for their help in carrying out the ARPEGE experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Berger.

Additional information

This paper is a contribution to the special issue on Global Monsoon Climate, a product of the Global Monsoon Working Group of the Past Global Changes (PAGES) project, coordinated by Pinxian Wang, Bin Wang, and Thorsten Kiefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundaram, S., Yin, Q.Z., Berger, A. et al. Impact of ice sheet induced North Atlantic oscillation on East Asian summer monsoon during an interglacial 500,000 years ago. Clim Dyn 39, 1093–1105 (2012). https://doi.org/10.1007/s00382-011-1213-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1213-z

Keywords

Navigation