Skip to main content

Advertisement

Log in

An assessment of oceanic variability in the NCEP climate forecast system reanalysis

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

At the National Centers for Environmental Prediction (NCEP), a reanalysis of the atmosphere, ocean, sea ice and land over the period 1979–2009, referred to as the climate forecast system reanalysis (CFSR), was recently completed. The oceanic component of CFSR includes many advances: (a) the MOM4 ocean model with an interactive sea-ice, (b) the 6 h coupled model forecast as the first guess, (c) inclusion of the mean climatological river runoff, and (d) high spatial (0.5° × 0.5°) and temporal (hourly) model outputs. Since the CFSR will be used by many in initializing/validating ocean models and climate research, the primary motivation of the paper is to inform the user community about the saline features in the CFSR ocean component, and how the ocean reanalysis compares with in situ observations and previous reanalysis. The net ocean surface heat flux of the CFSR has smaller biases compared to the sum of the latent and sensible heat fluxes from the objectively analyzed air-sea fluxes (OAFlux) and the shortwave and longwave radiation fluxes from the International Satellite Cloud Climatology Project (ISCCP-FD) than the NCEP/NCAR reanalysis (R1) and NCEP/DOE reanalysis (R2) in both the tropics and extratropics. The ocean surface wind stress of the CFSR has smaller biases and higher correlation with the ERA40 produced by the European Centre for Medium-Range Weather Forecasts than the R1 and R2, particularly in the tropical Indian and Pacific Ocean. The CFSR also has smaller errors compared to the QuickSCAT climatology for September 1999 to October 2009 than the R1 and R2. However, the trade winds of the CFSR in the central equatorial Pacific are too strong prior to 1999, and become close to observations once the ATOVS radiance data are assimilated in late 1998. A sudden reduction of easterly wind bias is related to the sudden onset of a warm bias in the eastern equatorial Pacific temperature around 1998/1999. The sea surface height and top 300 m heat content (HC300) of the CFSR compare with observations better than the GODAS in the tropical Indian Ocean and extratropics, but much worse in the tropical Atlantic, probably due to discontinuity in the deep ocean temperature and salinity caused by the six data streams of the CFSR. In terms of climate variability, the CFSR provides a good simulation of tropical instability waves and oceanic Kelvin waves in the tropical Pacific, and the dominant modes of HC300 that are associated with El Nino and Southern Oscillation, Indian Ocean Dipole, Pacific Decadal Oscillation and Atlantic Meridional Overturning Circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Antonov JI, Locarnini RA, Boyer TP, Mishonov AV, Garcia HE (2006) World Ocean Atlas 2005, vol 2, Salinity. Levitus S. (ed) NOAA Atlas NESDIS 62, US Government Printing Office, Washington, DC, 182 pp

  • Argo Science Team (2001) The global array of profiling floats. In: Koblinsky CJ, Smith NR (eds) Observing the ocean in the 21st century. Australian Bureau of Meteorology, London, pp 248–258

  • Balmaseda M, Anderson D (2009) Impact of initialization strategies and observations on seasonal forecast skill. Geophys Res Lett 36:L01701. doi:10.1029/2008GL035561

    Article  Google Scholar 

  • Balmaseda MA, Vidard A, Anderson D (2008) The ECMWF ORA-S3 ocean analysis system. Mon Weather Rev 136:3018–3034

    Article  Google Scholar 

  • Balmaseda M et al (2010) Role of the ocean observing system in an end-to-end seasonal forecasting system. In: Hall J, Harrison DE, Stammer D, (eds) Proceedings of oceanobs’09: sustained ocean observations and information for society (vol 2), Venice, Italy, 21–25 September 2009. ESA Publication WPP-306, Venice

  • Behringer DW (2007) The global ocean data assimilation system at NCEP. In: 11th Symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, AMS 87th annual meeting, San Antonio, Texas, 12 pp

  • Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP. In: The Pacific Ocean. Eighth symposium on integrated observing and assimilation system for atmosphere, ocean, and land surface, AMS 84th annual meeting, Washington State Convention and Trade Center, Seattle, Washington, DC, pp 11–15

  • Behringer DW, Ji M, Leetmaa A (1998) An improved coupled model for ENSO prediction and implications for ocean initialization. Part I. The ocean data assimilation system. Mon Weather Rev 126:1013–1021

    Article  Google Scholar 

  • Berry DI, Kent EC (2009) A new air-sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull Am Met Soc 90:645–656

    Article  Google Scholar 

  • Bond NA, Overland JE, Spillane M, Stabeno P (2003) Recent shifts in the state of the North Pacific. Geophys Res Lett 30(23):2183. doi:10.1029/2003GL018597

    Google Scholar 

  • Boning CW, Scheinert M, Dengg J, Biastoch A, Funk A (2006) Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys Res Lett 33:L21S01. doi:10.1029/2006GL026906

  • Bonjean F, Lagerloef GSE (2002) Diagnostic model and analysis of the surface currents in the tropical pacific ocean. J Phys Oceanogr 32:2938–2954

    Article  Google Scholar 

  • Bourlès B, Lumpkin R, McPhaden MJ, Hernandez F, Nobre P, Campos E, Yu L, Planton S, Busalacchi AJ, Moura AD, Servain J, Trotte J (2008) The PIRATA program: history, accomplishments, and future directions. Bull Am Met Soc 89:1111–1125

    Article  Google Scholar 

  • Carton JA, Santorelli A (2008) Global upper ocean heat content as viewed in nine analyses. J Clim 21:6015–6035

    Article  Google Scholar 

  • Chelliah M, Ebisuzaki W, Weaver S, Kumar A (2010) Evaluating the tropospheric analyses from NCEP’s climate forecast system reanalysis. Clim Dyn (submitted)

  • Chhak KC et al (2009) Forcing of low-frequency ocean variability in the northeast Pacific. J Clim 22:1255–1276

    Article  Google Scholar 

  • Conkright ME et al (1999) World ocean database 1998, documentation and quality control version 2.0. National oceanographic data center internal report 14. National Oceanographic Data Center, Silver Spring

  • de Boyer Montegut C, Mignot J, Lazar A, Cravatte S (2007) Control of salinity on the mixed layer depth in the world ocean. 1. General description. J Geophys Res 112:C06011. doi:10.1029/2006JC003953

  • Derber J, Rosati A (1989) A global oceanic data assimilation system. J Phys Oceanogr 19:1333–1347

    Article  Google Scholar 

  • Di Lorenzo E et al (2008) North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607. doi:10.1029/2007GL032838

    Article  Google Scholar 

  • Duing W et al (1975) Meanders and long waves in the equatorial Atlantic. Nature 257:280–284

    Article  Google Scholar 

  • Griffies SM, Harrison MJ, Pacanowski RC, Rosati A (2004) Technical guide to MOM4, GFDL ocean group technical report no. 5. NOAA/Geophysical Fluid Dynamics Laboratory. Available on-line at http://www.gfdl.noaa.gov/~fms

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Nino in ocean-atmosphere general circulation models. Bull Am Met Soc 90:325–340

    Article  Google Scholar 

  • Hakkinen S, Rhines PB (2004) Decline of subpolar North Atlantic circulation during the 1990s. Science 304:555–559

    Article  Google Scholar 

  • Hashizume H, Takeuchi K, Xie SP, Liu WT (2001) Local and remote atmospheric response to tropical instability waves- A global view from space. J Geophys Res 106:10173–10185

    Article  Google Scholar 

  • Hu ZZ, Huang B, Pegion K (2008) Low-cloud errors over the southeastern Atlantic in the NCEP CFS and their association with lower-tropospheric stability and air-sea interaction. J Geophys Res 113:D12114. doi:10.1029/2007JD009514

    Article  Google Scholar 

  • Huang B, Xue Y, Behringer DW (2008) Impacts of argo salinity in NCEP global ocean data assimilation system: the tropical Indian Ocean. J Geophys Res 113:C08002. doi:10.1029/2007JC004388

    Article  Google Scholar 

  • Ji M, Leetmaa A, Derber J (1995) An ocean analysis system for seasonal to interannual climate studies. Mon Wea Rev 123:460–481

    Article  Google Scholar 

  • Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I. Conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jochum M, Murtugudde R (2006) Temperature advection by tropical instability waves. J Phys Oceanogr 36:592–605

    Article  Google Scholar 

  • Josey SA, Kent EC, Taylor PK (2002) Wind stress forcing of the ocean in the SOC climatology: Comparisons with the NCEP–NCAR, ECMWF, UWM/COADS, and Hellerman and Rosenstein Datasets. J Phys Oceanogr 32:1993–2019

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Am Met Soc 77:437–471

    Article  Google Scholar 

  • Kanamitsu M, Ebitsuzaki W, Woolen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Met Soc 83:1631–1643

    Article  Google Scholar 

  • Keppenne CL, Rienecker MM, Jacob JP, Kovach R (2008) Error covariance modeling in the GMAO ocean ensemble kalman filter. Mon Wea Rev 136:2964–2982

    Article  Google Scholar 

  • Kessler WS, McPhaden MJ, Weickmann KM (1995) Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J Geophys Res 100:10613–10631

    Article  Google Scholar 

  • Kohl A, Stammer D (2008) Decadal sea level changes in the 50-year GECCO ocean synthesis. J Clim 21:1876–1890

    Article  Google Scholar 

  • Large WG, Yeager SG (2009) The global climatology of an interannually varying air-sea flux data set. Clim Dyn 33:341–364

    Article  Google Scholar 

  • Levitus S (1986) Annual cycle of salinity and salt storage in the World Ocean. J Phys Oceanogr 16:322–343

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608. doi:10.1029/2008GL037155

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2006) World Ocean Atlas 2005, volume 1. Temperature. In: Levitus S (ed) NOAA Atlas NESDIS 61, US Government Printing Office, Washington, DC, 182 pp

  • Long CS, Butler AH, Lin R, Wild J, Yang SK, Zhou S, Liu H (2010) Evaluation of the stratosphere in the NCEP climate forecast system reanalysis. Clim Dyn (submitted)

  • Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res 96:3343–3357

    Article  Google Scholar 

  • Mantua NJ, Hare SJ, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal oscillation with impacts on salmon production. Bull Amer Met Soc 78:1069–1079

    Article  Google Scholar 

  • McPhaden MJ, Yu X (1999) Equatorial waves and the 1997–98 El Niño. Geophys Res Lett 26:2961–2964

    Article  Google Scholar 

  • McPhaden MJ et al (1998) The tropical ocean–global atmosphere (TOGA) observing system: a decade of progress. J Geophys Res 103:14,169–14,240

    Article  Google Scholar 

  • McPhaden MJ et al (2009) RAMA: the research moored array for African–Asian–Australian monsoon analysis and prediction. Bull Amer Met Soc 90:459–480

    Article  Google Scholar 

  • Meehl GA et al (2009) Decadal prediction: can it be skillful? Bull Am Met Soc 90:1467–1485

    Article  Google Scholar 

  • Qiao L, Weisberg RH (1995) Tropical instability wave kinematics: observations from the tropical instability wave experiment. J Geophys Res 100:8677–8694

    Article  Google Scholar 

  • Rao SA, Behera SK, Masumoto Y, Yamagata T (2002) Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep Sea Res II 49:1549–1572

    Article  Google Scholar 

  • Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Google Scholar 

  • Renfrew IA, Moore GWK, Guest PS, Bumke K (2002) A comparison of surface layer and surface turbulent-flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J Phys Oceanogr 32:383–400

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J Phys Oceanogr 38:2379–2413

    Article  Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Met Soc 91:1015–1057

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Schneider EK, Huang B, Zhu Z, DeWitt DG, Kinter JL III, Kirtman B, Shukla J (1999) Ocean data assimilation, initialization, and predictions of ENSO with a coupled GCM. Mon Wea Rev 127:1187–1207

    Article  Google Scholar 

  • Seo KH, Xue Y (2005) MJO-related oceanic Kelvin waves and the ENSO cycle: a study with the NCEP global ocean data assimilation system. Geophys Res Lett 32:L07712. doi:10.1029/2005GL022511

    Article  Google Scholar 

  • Smith SR, Legler D, Verzone KV (2001) Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations. J Clim 14:4062–4072

    Article  Google Scholar 

  • Sprintall J, Tomczak M (1992) Evidence of the barrier layer in the surface layer of the tropics. J Geophys Res 97:7305–7316

    Article  Google Scholar 

  • Stammer D, Ueyoshi K, Large W, Josey S, Wunsch C (2004) Estimating air–sea fluxes of heat, freshwater and momentum through global ocean data assimilation. J Geophys Res 109. doi:10.1029/2003JC002082

  • Taylor P (ed) (2000) Final report of the joint WCRP/SCOR Working Group on air–sea fluxes: intercomparison and validation of ocean–atmosphere energy flux fields, WCRP-112, WMO/TDNo. 1036. World Climate Research Programme, 303 pp

  • Trenberth KE, Hurrell JW (1994) Recent observed interdecadal climate changes in the Northern Hemisphere. Clim Dyn 9:303–319

    Google Scholar 

  • Trenberth KE, Stepaniak DP, Hurrell JW, Fiorino M (2001) Quality of reanalyses in the tropics. J Clim 14:1499–1510

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteor Soc 131:2961–3012

    Article  Google Scholar 

  • Walker G, Bliss E (1932) World weather V. Mem Roy Meteor Soc 4:53–84

    Google Scholar 

  • Wang W, McPhaden MJ (1999) The surface-layer heat balance in the equatorial Pacific Ocean. Part I. Mean seasonal cycle. J Phys Oceanogr 29:1812–1831

    Article  Google Scholar 

  • Wang W, Xie P, Yoo SH, Xue Y, Kumar A, Wu X (2010) An assessment of the surface climate in the NCEP Climate Forecast System Reanalysis. Clim Dyn (Conditionally accepted)

  • Willis JK, Roemmich D, Cornuelle B (2004) Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res 109:C12036. doi:10.1029/2003JC002260

    Article  Google Scholar 

  • Wittenberg AT (2004) Extended wind stress analyses for ENSO. J Clim 17:2526–2540

    Article  Google Scholar 

  • Wyrtki K (1985) Water displacements in the Pacific and the genesis of El Nin˜o cycles. J Geophys Res 90:7129–7132

    Article  Google Scholar 

  • Xue Y, Leetmaa A, Ji M (2000) ENSO prediction with Markov models: the impact of sea level. J Clim 13:849–871

    Article  Google Scholar 

  • Xue Y et al (2010) Ocean state estimation for global ocean monitoring: ENSO and beyond ENSO. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of ocean obs’09: sustained ocean observations and information for society (vol 2), Venice, Italy, 21–25 September 2009, ESA Publication WPP-306

  • Yamagata T, Behera SK, Luo JJ, Masson S, Jury M, Rao SA (2004) Coupled ocean-atmosphere variability in the tropical Indian Ocean. In: Wang C, Xie S-P, Carton JA (eds) Earth climate: the ocean–atmosphere interaction. Geophys Monogr 147, AGU, Washington, DC, pp 189–212

    Chapter  Google Scholar 

  • Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes (OAFlux) for the global ocean. Bull Am Met Soc 88:527–539

    Article  Google Scholar 

  • Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamical algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:2628–2644

    Article  Google Scholar 

  • Zhang R (2008) Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys Res Lett 35:L20705. doi:10.1029/2008GL035463

    Article  Google Scholar 

  • Zhang C, Gottschalck J (2002) SST anomalies of ENSO and the Madden-Julian Oscillation in the equatorial Pacific. J Clim 15:2429–2445

    Article  Google Scholar 

  • Zhang Y, Rossow W, Lacis A, Oinas V, Mishchenko M (2004) Calculation of radiative flux profiles from the surface to top-of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and input data. J Geophys Res 109. doi:10.1029/2003JD004457

  • Zhang S, Harrison MJ, Rosati A, Wittenberg A (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic studies. Mon Wea Rev 135:3541–3564

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mike Halpert and Wanqiu Wang, and the two anonymous reviewers for their thorough reviews of the manuscript. We are also thankful for (1) the altimeter products produced by Ssalto/Duacs and distributed by Aviso with support from CNES, (2) the seasonal mean temperature and 5-year mean salinity analysis and the World Ocean Atlas by National Oceanographic Data Center, (3) the TAO mooring data by NOAA, (4) the Objectively Analyzed air-sea Fluxes (OAFlux) by Woods Hole Oceanographic Institution, (5) the ISCCP global radiative flux by NASA Goddard Institute for Space Studies, (6) the Ocean Surface Current Analysis-Real Time (OSCAR) by Earth and Space Research, (7) the TRMM Microwave Imager (TMI) SST by Remote Sensing Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, Y., Huang, B., Hu, ZZ. et al. An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Clim Dyn 37, 2511–2539 (2011). https://doi.org/10.1007/s00382-010-0954-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0954-4

Keywords

Navigation