Skip to main content
Log in

Current status of ENSO prediction skill in coupled ocean–atmosphere models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The overall skill of ENSO prediction in retrospective forecasts made with ten different coupled GCMs is investigated. The coupled GCM datasets of the APCC/CliPAS and DEMETER projects are used for four seasons in the common 22 years from 1980 to 2001. As a baseline, a dynamic-statistical SST forecast and persistence are compared. Our study focuses on the tropical Pacific SST, especially by analyzing the NINO34 index. In coupled models, the accuracy of the simulated variability is related to the accuracy of the simulated mean state. Almost all models have problems in simulating the mean and mean annual cycle of SST, in spite of the positive influence of realistic initial conditions. As a result, the simulation of the interannual SST variability is also far from perfect in most coupled models. With increasing lead time, this discrepancy gets worse. As one measure of forecast skill, the tier-1 multi-model ensemble (MME) forecasts of NINO3.4 SST have an anomaly correlation coefficient of 0.86 at the month 6. This is higher than that of any individual model as well as both forecasts based on persistence and those made with the dynamic-statistical model. The forecast skill of individual models and the MME depends strongly on season, ENSO phase, and ENSO intensity. A stronger El Niño is better predicted. The growth phases of both the warm and cold events are better predicted than the corresponding decaying phases. ENSO-neutral periods are far worse predicted than warm or cold events. The skill of forecasts that start in February or May drops faster than that of forecasts that start in August or November. This behavior, often termed the spring predictability barrier, is in part because predictions starting from February or May contain more events in the decaying phase of ENSO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • AchutaRao K, Sperber KR (2002) Simulation of the El Niño-Southern Oscillation: results from the coupled model intercomparison project. Clim Dyn 19:191–209

    Article  Google Scholar 

  • AchutaRao K, Sperber KR (2006) ENSO Simulation in coupled ocean–atmosphere models: are the current models better? Clim Dyn 27:1–15

    Article  Google Scholar 

  • An SI, Wang B (2001) Mechanisms of locking the El Nino and La Nina mature phases to boreal winter. J Clim 14:2164–2176

    Article  Google Scholar 

  • Balmaseda MA, Davey MK, Anderson DLT (1995) Decadal and seasonal dependence of ENSO prediction skill. J Clim 8:2705–2715

    Article  Google Scholar 

  • Barnett TP, Graham NE, Cane MA, Zebiak SE, Dolan SC, O’Brien J, Legler D (1988) On the prediction of the El Niño of 1986–1987. Science 241:192–196

    Article  Google Scholar 

  • Barnston AG, Glantz M, He Y (1999) Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–98 El Niño and the 1998 La Niña onset. Bull Amer Met Soc 80:217–243

    Article  Google Scholar 

  • Barnston AG, van den Dool HM, Zebiak SE, Barnett TP, Ji M, Rodenhuis DR, Cane MA, Leetmaa A, Graham NE, Ropelewski CR, Kousky VE, O’Lenic EA, Livezey RE (1994) Long-lead seasonal forecasts—Where do we stand? Bull Am Met Soc 75:2097–2114

    Article  Google Scholar 

  • Barnston AG, Chelliah M, Goldenberg SB (1997) Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos–Ocean 35:367–383

    Google Scholar 

  • Battisti DS, Hirst AC (1989) Interannual variability in the tropical atmosphere–ocean system: influence of the basic stated, ocean geometry, and non-linearity. J Atmos Sci 46:1687–1712

    Article  Google Scholar 

  • Battisti DS (1988) Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J Atm Sci 45:2889–2919

    Article  Google Scholar 

  • Bengtsson L, Schlese U, Roeckner E, Latif M, Barnett TP, Graham NE (1993) A two-tiered approach to long-range climate forecasting. Science 261:1027–1029

    Article  Google Scholar 

  • Blumenthal MB (1991) Predictability of a coupled ocean–atmosphere model. J Clim 4:766–784

    Article  Google Scholar 

  • Bradley RS, Diaz HF, Kiladis GN, Eishcheid JK (1987) ENSO signal in continental temperature and precipitation records. Nature 327:497–501

    Article  Google Scholar 

  • Cane MA, Zebiak SE, Dolan SC (1986) Experimental forecasts of El Niño. Nature 321:827–832

    Article  Google Scholar 

  • Chen D, Zeiak SE, Busalacchi AJ, Cane MA (1995) An improved procedure for El Niño forecasting: implications for predictability. Science 269:1699–1702

    Article  Google Scholar 

  • Clarke AJ, Van Gorder S (1999) The correlation between the boreal spring Southern Oscillation persistence barrier and biennial variability. J Clim 12:610–620

    Article  Google Scholar 

  • Davey M, Huddleston M, Sperber KR, Braconnot P, Bryan F, Chen D, Colman RA, Cooper C, Cubasch U, Delecluse P, DeWitt D, Fairhead L, Flato G, Gordon C, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson TR, Latif M, Le Treut H, Li T, Manabe S, Mechoso CR, Meehl GA, Oberhuber J, Power SB, Roeckner E, Terray L, Vintzileos A, Voss R, Wang B, Washington WM, Yoshikawa I, Yu JY, Yukimoto S, Zebiak SE (2002) A study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18:403–420

    Article  Google Scholar 

  • Delecluse P, Davey M, Kitamura Y, Philander S, Suarez M, Bengtsson L (1998) TOGA review paper: coupled general circulation modeling of the tropical Pacific. J Geophys Res 103:14357–14373

    Article  Google Scholar 

  • Delecluse P, Madec G (1999) Ocean modeling and the role of the ocean in the climate system. In: Holland WR, Joussaume S, David F (eds) Modeling the earth’s climate and its variability. Elsevier, Amsterdam, pp 237–313

    Google Scholar 

  • Deque M (2001) Seasonal predictability of tropical rainfall: Probabilistic formulation and validation. Tellus 53A:500–512

    Google Scholar 

  • Fischer M (2002) ENSO predictions with coupled ocean–atmosphere models. In: Pinardi N, Woods J (eds) Ocean forecasting. Springer, Berlin, pp 307–338

    Google Scholar 

  • Fu X, Wang B, Li T, McCreary J (2004) Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J Atmos Sci 60:1733–1753

    Article  Google Scholar 

  • Goddard L, Mason SJ, Zebiak SE, Ropelewski CF, Basher R, Cane MA (2001) Current approaches to seasonal-to-interannual climate predictions. Int J Climatol 21:1111–1152

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Goswami BN, Shukla J (1991) Predictability of the coupled ocean–atmosphere model. J Clim 4:3–22

    Article  Google Scholar 

  • Graham NE, Michaelson J, Barnett TP (1987) An investigation of the El Niño-Southern Oscillation cycle with statistical models: II. Model results. J Geophys Res 92:14271–14289

    Article  Google Scholar 

  • Gregory D, Morcrette JJ, Jakob C, Beljaars ACM, Stockdale T (2000) Revision of convection, radiation and cloud schemes in the ECMWF Integrated Forecasting System. Q J R Meteor Soc 126:1685–1710

    Article  Google Scholar 

  • Gualdi S, Alessandri A, Navarra A (2005) Impact of atmospheric horizontal resolution on El Niño Southern Oscillation forecasts. Tellus 57A:357–374

    Google Scholar 

  • Ji M, Behringer DW, Leetmaa A (1998) An improved coupled model for ENSO prediction and implications for ocean initialization. Part II: The coupled model. Mon Weather Rev 126:1022–1034

    Article  Google Scholar 

  • Ji M, Leetmaa A (1997) Impact of data assimilation on ocean initialization and El Niño prediction. Mon Weather Rev 125:742–753

    Article  Google Scholar 

  • Jin EK, Kinter JL III (2007) Characteristics of tropical pacific SST predictability in coupled GCM forecasts using the NCEP CFS. J Clim (Submitted)

  • Jochum M, Murtugudde R (2004) Internal variability of the tropical pacific ocean. Geophys Res Lett 31:L14309. doi:10.1029/2004GL020488

  • Kanamitsu M, Kumar A, Juang HM, Schemm JK, Wang W, Yang F, Hong SY, Peng P, Chen W, Moorthi S, Ji M (2002) NCEP dynamical seasonal forecast system 2000. Bull Amer Met Soc 83:1019–1037

    Article  Google Scholar 

  • Kirtman BP (2003) The COLA anomaly coupled model: ensemble ENSOprediction. Mon Weather Rev 131:2324–2341

    Article  Google Scholar 

  • Kirtman BP, Shukla J, Balmaseda M, Graham N, Penland C, Xue Y, Zebiak SE (2001) Current status of ENSO forecast skill: A report to the Climate Variability and Predictability (CLIVAR) Working Group on Seasonal to Interannual Prediction. WCRP Informal Report No 23/01, 31pp

  • Kirtman BP, Shukla J, Huang B, Zhu Z, Schneider EK (1997) Multi-seasonal prediction with a coupled tropical ocean global atmosphere system. Mon Weather Rev 125:89–808

    Google Scholar 

  • Krishnamurti TN, Kishitawal CM, Zhang Z, Larow T, Bachiochi D, Williford E (2000) Multimodel ensemble forecasts for weather and seasonal climate. J Clim 13:4196–4216

    Article  Google Scholar 

  • Kug JS, Kang IS, Choi DH (2008) Seasonal climate predictability with tier-one and tier-two prediction Systems. Clim Dyn. doi:10.1007/s00382-007- 0264-7

  • Kug JS, Lee JY, Kang IS (2007) Global sea surface temperature prediction using a multi-model ensemble. Mon Wea Rev 135:3239–3247

    Google Scholar 

  • Landsea CW, Knaff JA (2000) How much skill was there in forecasting the very strong 1997–98 El Niño? Bull Amer Met Soc 81:2107–2120

    Article  Google Scholar 

  • Latif M, Barnett TP, Cane MA, Flu¨gel M, Graham NE, Von Storch H, Xu JS, Zebiak SE (1994) A review of ENSO prediction studies. Clim Dyn 9:167–179

    Article  Google Scholar 

  • Latif M, Sperber K, Arblaster J, Braconnot P, Chen D, Colman A, Cubasch U, Cooper C, Delecluse P, DeWitt D, Fairhead L, Flato G, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson T, Le Treut H, Li T, Manabe S, Marti O, Mechoso C, Meehl G, Power S, Roeckner E, Sirven J, Terray L, Vintzileos A, Vob R, Wang B, Wasington W, Yoshikawa I, Yu JY, Zebiak SE (2001) ENSIP: the El Niño simulation intercomparison project. Clim Dyn 18:255–276

    Article  Google Scholar 

  • Lau KM, Waliser DE (2005) Intraseasonal variability in the atmosphere–ocean climate system. Springer, Berlin

    Book  Google Scholar 

  • Leetmaa A, Ji M (1989) Operational hindcasting of the tropical Pacific. Dyn Atmos Oceans 13:465–490

    Article  Google Scholar 

  • Luo JJ, Masson S, Behera S, Shingu S, Yamagata T (2005) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble Forecasts. J Clim 18:4474–4497

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbard M, Levy C (1997) OPA release 8. Ocean general circulation model reference manual. LODYC Internal Rep., Paris, France, 200pp

  • Madec G, Delecluse P, Imbard M, Levy C (1998) OPA version 8.1 Ocean general circulation model reference manual. LODYC Tech Rep. 11, Paris, France, 91pp

  • Marsland SJ, Haak H, Jungclaus JH, Latif M, Roske F (2003) The Max-Plank-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell 5:91–127

    Article  Google Scholar 

  • Mason SJ, Goddard L, Graham NE, Yulaeva E, Sun L, Arkin PA (1999) The IRI seasonal climate prediction system and the 1997/98 El Niño event. Bull Amer Met Soc 80:1853–1873

    Article  Google Scholar 

  • Mechoso CR, Robertson AW, Barth N, Davey MK, Delecluse P, Gent PR, Ineson S, Kirtman BP, Latif M, Le Treut H, Nagai T, Neelin JD, Philander SGH, Polcher J, Schopf PS, Stockdale TN, Suarez MJ, Terray L, Thual O, Tribbia JJ (1995) The seasonal cycle over the tropical Pacific in coupled atmosphere–ocean general-circulation models. Mon Weather Rev 123:2825–2838

    Article  Google Scholar 

  • Murtugudde R, Beauchamp J, McClain CR, Lewis M, Busalacchi AJ (2002) Effects of penetrative radiation on the upper tropical ocean circulation. J Clim 15:470–486

    Google Scholar 

  • Neelin JD, Dijkstra HA (1995) Ocean–atmosphere interaction and the tropical climatology. Part I: the dangers of flux correction. J Clim 8:1325–1342

    Article  Google Scholar 

  • Neelin JD, Latif M, Allaart MAF, Cane MA, Cubasch U, Gates WL, Gent PR, Ghil M, Gordon C, Lau NC, Mechoso CR, Meehl GA, Oberhuber JM, Philander SGH, Schopf PS, Sperber KR, Sterl A, Tokioka T, Tribbia J, Zebiak SE (1992) Tropical air-sea interaction in general circulation models. Clim Dyn 7:73–104

    Article  Google Scholar 

  • Pacanowski RC (1995) MOM 2.2 manual. NOAA/GFDL

  • Pacanowski RC, Griffies SM (1998) MOM 3.0 manual. NOAA/GFDL. http://www.gfdl.noaa.gov/_smg/MOM/web/guide_parent/guide_parent.html

  • Palmer TN, Alessandri A, Andersen U, Cantelaube P, Davey M, Delecluse P, Deque M, Diez E, Doblas-Reyes FJ, Feddersen H, Graham R, Gualdi S, Gueremy JF, Hagedorn R, Hoshen M, Keenlyside N, Latie M, Lazar A, Maisonnave E, Marletto V, Morse AP, Orfila B, Rogel P, Terres JM, Thomson MC (2004) Development of a European multi-model ensemble system for seasonal to interannual prediction (DEMETER). Bull Amer Met Soc 85:853–872

    Article  Google Scholar 

  • Palmer TN, Brankovic C, Richardson DS (2000) A probability and decision-model analysis of PROBOST seasonal multi-model ensemble integrations. Q J R Meteor Soc 126:2013–2034

    Article  Google Scholar 

  • Philander SGH (1990) El Niño, La Niña and the Southern Oscillation. Academic Press, San Diego, pp 293

    Google Scholar 

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, AlenxanderLV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407–4443

    Article  Google Scholar 

  • Roeckner E (1996) The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Institut fur Meteorologie Tech. Rep. 218, Hamburg, Germany, 90pp. Available from Max-Planck Institut fur Meteorologie, Bundesstr. 55, D-20146 Hamburg, Germany

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1989) Precipitation patterns associated with the high index phase of the Southern Oscillation. J Clim 2:268–284

    Article  Google Scholar 

  • Rosati A, Miyakoda K, Gudgel R (1997) The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon Weather Rev 125:754–772

    Article  Google Scholar 

  • Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, van den Dool HM, Pan HL, Moorthi S, Behringer D, Stokes D, White G, Lord S, Ebisuzaki W, Peng P, Xie P (2005) The NCEP Cliamte Forecast System. J Clim 15:3483–3517

    Google Scholar 

  • Schneider EK, DeWitt DG, Rosati A, Kirtman BP, Ji L, Tribbia JJ (2003) Retrospective ENSO forecasts: sensitivity to atmospheric model and ocean resolution. Mon Weather Rev 131:3038–3060

    Article  Google Scholar 

  • Schneider EK, Huang B, Zhu Z, DeWitt DG, Kinter III JL, Kirtman BP, Shukla J (1999) Ocean data assimilation, initialization and prediction of ENSO with a coupled GCM. Mon Weather Rev 127:1187–1207

    Article  Google Scholar 

  • Schopf PS, Suarez MJ (1988) Vacillations in a coupled ocean–atmosphere model. J Atmos Sci 45:549–566

    Article  Google Scholar 

  • Shukla J (1998) Predictability in the Midst of Chaos: A Scientific Basis for Climate Forecasting. Science 282:728–731

    Article  Google Scholar 

  • Stern W, Miyakoda K (1995) Feasibility of seasonal forecasts inferred from multiple GCM simulations. J Clim 8:1071–1085

    Article  Google Scholar 

  • Stockdale TN (1997) Coupled ocean–atmosphere forecasts in the presence of climate drift. J Clim 10:809–818

    Google Scholar 

  • Stockdale TN, Anderson DLT, Alves JOS, Balmaseda MA (1998) Global seasonal rainfall forecasts using a coupled ocean–atmosphere model. Nature 392:370–373

    Article  Google Scholar 

  • Torrence C, Webster PJ (1998) The annual cycle of persistence in the El Niño /Southern Oscillation, Q J R Meteor Soc 124:1985–2004

    Google Scholar 

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103:14291–14324

    Article  Google Scholar 

  • Troup AJ (1965) The “southern oscillation”. Q J R Meteor Soc 91:490–506

    Article  Google Scholar 

  • Wang B, Ding QH, Fu XH, Kang IS, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711. doi:10.1029/2005GL022734

    Article  Google Scholar 

  • Wang B, Lee JY, Kang IS, Shukla J, Kug JS, Kumer A, Schemm J, Luo JJ, Yamagata T, Park CK (2007) How accurately do coupled climate models predict the Asian-Australian Monsoon interannual variability? Clim Dyn (Submitted)

  • Wang G, Kleeman R, Smith N, Tseitkin F (2002) The BMRC coupled general circulation model ENSO forecast system. Mon Weather Rev 130:975–991

    Article  Google Scholar 

  • Webster PJ (1995) The annual cycle and the predictability of the tropical coupled ocean–atmosphere system, Meteor Atmos Phys 56:33–55

    Article  Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and ENSO: Selectively interactive systems. Q J R Meteor Soc 118:877–925

    Article  Google Scholar 

  • Wolff JE, Maier-Reimer E, Legutke S (1997) The Hamburg Ocean primitive equation model. Deutsches Klimarechenzentrum Tech. Rep. 13, Hamburg, Germany, 13pp. Available from Model and Data Group c/o Max-Planck Institut fur Meteorologie, Bundesstr. 55, D-20146 Hamburg, Germany

  • Wright PB (1979) Persistence of rainfall anomalies in the central Pacific. Nature 277:371–374

    Article  Google Scholar 

  • Xue Y, Cane MA, Zebiak SE, Blumenthal MB (1994) On the prediction of ENSO: a study with a low-order Markov model. Tellus 46A:512–528

    Google Scholar 

  • Yu JY (2005) Enhancement of ENSO’s persistence barrier by biennial variability in a coupled atmosphere–ocean general circulation model. J Geophys Res 32:L13707. doi:10.1029/2005GL023406

    Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Niño-Scouthern Oscillation. Mon Weather Rev 115:2262–2278

    Article  Google Scholar 

  • Zheng Y, Walier DE, Stern WF, Jones C (2004) The role of coupled sea surface temperatures in the simulation of the tropical intraseasonal oscillation. J Clim 21:4109–4134

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by APEC Climate Center (APCC) as a part of APCC International research project. The second author was supported by grants from the National Science Foundation (ATM-0332910), the National Oceanic and Atmospheric Administration (NA04OAR4310034) and the National Aeronautics and Space Administration (NNG04GG46G). The 5th and 7th authors were supported by the SRC program of the Korean Science and Engineering Foundation and the Brain Korea 21 project. We would like to thank Duane E. Waliser and one anonymous reviewer for their constructive comments on the earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia K. Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, E.K., Kinter, J.L., Wang, B. et al. Current status of ENSO prediction skill in coupled ocean–atmosphere models. Clim Dyn 31, 647–664 (2008). https://doi.org/10.1007/s00382-008-0397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0397-3

Keywords

Navigation