Skip to main content
Log in

Evaluating EOF modes against a stochastic null hypothesis

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this paper it is suggested that a stochastic isotropic diffusive process, representing a spatial first order auto regressive process (AR(1)-process), can be used as a null hypothesis for the spatial structure of climate variability. By comparing the leading empirical orthogonal functions (EOFs) of a fitted null hypothesis with EOF modes of an observed data set, inferences about the nature of the observed modes can be made. The concept and procedure of fitting the null hypothesis to the observed EOFs is in analogy to time analysis, where an AR(1)-process is fitted to the statistics of the time series in order to evaluate the nature of the time scale behavior of the time series. The formulation of a stochastic null hypothesis allows one to define teleconnection patterns as those modes that are most distinguished from the stochastic null hypothesis. The method is applied to several artificial and real data sets including the sea surface temperature of the tropical Pacific and Indian Ocean and the Northern Hemisphere wintertime and tropical sea level pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aires F, Rossow WB, Chedin A (2002) Rotation of EOFs by the independent component analysis: toward a solution of the mixing problem in the decomposition of geophysical time series. J Atmos Sci 59:111–123

    Article  Google Scholar 

  • Ambaum MHP, Hoskins BJ, Stephenson DB (2001) Arctic oscillation or North Atlantic oscillation?. J Clim 14:3495–3507

    Article  Google Scholar 

  • Baquero A, Latif M (2002) On dipole-like variability in the tropical Indian Ocean. J Clim 15(11):1358–1368

    Article  Google Scholar 

  • Barnett TP, Graham N, Pazan S, White W, Latif M, Flügel M (1993) ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere model. J Clim 6(8):1545–1566

    Article  Google Scholar 

  • Behera SK, Rao SA, Saji HN, Yamagata T (2003) Comments on ’A cautionary note on the interpretation of EOFs’. J Clim 16(7):1087–1093

    Article  Google Scholar 

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009

    Article  Google Scholar 

  • Cahalan RF, Wharton LE, Wu M-L (1996) Empirical orthogonal functions of monthly precipitation and temperature over the United States and homogenous stochastic models. J Geophys Res 101(D21):26309–26318

    Article  Google Scholar 

  • Crommelin DT, Majda AJ (2004) Strategies for model reduction: comparing different optimal bases. J Atmos Res 61:2206–2217

    Article  Google Scholar 

  • Deser C (2000) On the teleconnectivity of the “Arctic Oscillation”. Geophys Res Lett 27(6):779–782

    Article  Google Scholar 

  • Dommenget D, Latif M (2002a) A cautionary note on the interpretation of EOF. J Clim 15(2):216–225

    Article  Google Scholar 

  • Dommenget D, Latif M (2002b) Analysis of observed and simulated SST spectra in the midlatitudes. Clim Dyn 19:277–288

    Article  Google Scholar 

  • Dommenget D, Latif M (2003) Reply to Behera et al. 2003. J Clim 16(7):1094–1097

    Article  Google Scholar 

  • Dommenget D, Stammer D (2004) Assessing ENSO simulations and predictions using adjoint ocean state north GR, 1984 estimation. J Clim 17(22):4301–4315

    Article  Google Scholar 

  • van den Dool HM, Saha S, Johansson A (2000) Empirical orthogonal teleconnections. J Clim 13:1421–1435

    Article  Google Scholar 

  • Folland CK, Parker DE, Colman AW, Washington R (1999) Large scale modes of ocean surface temperature since the late nineteenth century. In: Navarra A (ed) Beyond El Nino. Springer, Berlin Heidelberg New York, pp 73–102

    Google Scholar 

  • Gerber EP, Vallis GK (2005) A stochastic model for the spatial structure of annular patterns of variability and the North Atlantic Oscillation. J Clim 18(12):2102–2118

    Article  Google Scholar 

  • Hasselmann K (1976) Stochastic climate models. Part I: Theory, Tellus 28:473–485

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, Berlin Heidelberg New York, pp 150–166

    Google Scholar 

  • Jolliffe IT (2003) A cautionary note on artificial examples of EOFs. J Clim 6(7):1084–1086

    Article  Google Scholar 

  • Kaiser HF (1958) The varimax criterion for analytic rotations in factor analysis. Psychometrika 23:187

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler M, Collins R, Deaven W, Gandin D, Iredell L, Saha M, White S, Woollen G, Zhu J, Chelliah Y, Ebisuzaki M, Higgins W, Janowiak W, Mo J, Ropelewski KC, Wang C, Leetmaa J, Reynolds A, Jenne R, Joseph R, Dennis R (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77(3):437–471

    Article  Google Scholar 

  • Kirtman BP, Pegion K, Kinter SM (2005) Internal atmospheric dynamics and tropical Indo-Pacific climate variability. J Atmos Res 62:2220–2233

    Article  Google Scholar 

  • North L (1991) Atmospheric variability on a zonally symetric land planet. J Clim 4:753–765

    Article  Google Scholar 

  • Metz W (1994) Singular modes and low-frequency atmospheric variability. J Atmos Sci 51:1740–1753

    Article  Google Scholar 

  • Navarra A (1993) A new set of orthogonal modes for linearized meteorological problems. J Atmos Sci 50:2569–2583

    Article  Google Scholar 

  • North GR (1984) Empirical orthogonal functions and normal modes. J Atmos Sci 41:879–887

    Article  Google Scholar 

  • North GR, Cahalan RF, Coakley JA (1981) Energy-balance climate models. Rev Geophys Sp Phys 19:91–121

    Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Wea Rev 110:699–706

    Article  Google Scholar 

  • North GR, Mengel JG, Short DA (1983) A simple energy balance model resolving the seasons and the continents: application to the astronomical theory of the ice ages. J Geophys Res 88:6576–6586

    Article  Google Scholar 

  • Overland JE, Preisendorfer RW (1982) A significance test for pricipal components applied to a cyclone climatology. Mon Wea Rev 110(1):1–4

    Article  Google Scholar 

  • Reynolds RW (1978) Sea surface temperature anomalies in the North Pacific ocean. Tellus 30:97–103

    Article  Google Scholar 

  • Richman MB (1986) Review article: rotation of principal components. J Climatology 6:293–335

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge. ISBN 0 521 45071 3, 494 pp

  • Thompson DWJ, Wallace JM (1998) The Artic oscillation signature in wintertime geopotential height field and temperature field. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Wallace JM, Thompson DWJ (2002) The Pacific center of action of the northern hemisphere annular mode: real or artifact? J Clim 15(14):1987–1991

    Article  Google Scholar 

Download references

Acknowledgments

This work was motivated by fruitful and inspiring discussions with Alexander Gershunov and Thomas Reichler. Comments from Ian Jolliffe and the anonymous reviewers helped to improve this analysis significantly. Furthermore, I like to thank Noel Keenlyside, Mojib Latif, Katja Lorbacher, Oliver Timm, Jörg Wegener and Jürgen Willebrand for comments and proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Dommenget.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dommenget, D. Evaluating EOF modes against a stochastic null hypothesis. Clim Dyn 28, 517–531 (2007). https://doi.org/10.1007/s00382-006-0195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-006-0195-8

Keywords

Navigation