Skip to main content

Advertisement

Log in

Noninvasive methods of detecting increased intracranial pressure

  • Review Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

The detection of elevated intracranial pressure (ICP) is of paramount importance in the diagnosis and management of a number of neurologic pathologies. The current gold standard is the use of intraventricular or intraparenchymal catheters; however, this is invasive, expensive, and requires anesthesia. On the other hand, diagnosing intracranial hypertension based on clinical symptoms such as headaches, vomiting, and visual changes lacks sensitivity. As such, there exists a need for a noninvasive yet accurate and reliable method for detecting elevated ICP. In this review, we aim to cover both structural modalities such as computed tomography (CT), magnetic resonance imaging (MRI), ocular ultrasound, fundoscopy, and optical coherence tomography (OCT) as well as functional modalities such as transcranial Doppler ultrasound (TCD), visual evoked potentials (VEPs), and near-infrared spectroscopy (NIRS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Czosnyka M (2004) Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 75:813–821. doi:10.1136/jnnp.2003.033126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hayward R, Britto J, Dunaway D, Jeelani O (2016) Connecting raised intracranial pressure and cognitive delay in craniosynostosis: many assumptions, little evidence. J Neurosurg Pediatr 13:1–9. doi:10.3171/2015.6.PEDS15144

    Article  Google Scholar 

  3. Medina LS, Pinter JD, Zurakowski D, et al. (1997) Children with headache: clinical predictors of surgical space-occupying lesions and the role of neuroimaging. Radiology 202:819–824. doi:10.1148/radiology.202.3.9051039

    Article  CAS  PubMed  Google Scholar 

  4. de Jong T, Bannink N, Bredero-Boelhouwer HH, et al. (2010) Long-term functional outcome in 167 patients with syndromic craniosynostosis; defining a syndrome-specific risk profile. J Plast Reconstr Aesthet Surg 63:1635–1641. doi:10.1016/j.bjps.2009.10.029

    Article  PubMed  Google Scholar 

  5. Koskinen L-OD, Grayson D, Olivecrona M (2013) The complications and the position of the Codman MicroSensor™ ICP device: an analysis of 549 patients and 650 sensors. Acta Neurochir 155:2141–2148 . doi:10.1007/s00701-013-1856-0discussion 2148

    Article  PubMed  Google Scholar 

  6. Hoefnagel D, Dammers R, Ter Laak-Poort MP, Avezaat CJJ (2008) Risk factors for infections related to external ventricular drainage. Acta Neurochir 150:209–214. doi:10.1007/s00701-007-1458-9

    Article  CAS  PubMed  Google Scholar 

  7. Dasic D, Hanna SJ, Bojanic S, Kerr RSC (2006) External ventricular drain infection: the effect of a strict protocol on infection rates and a review of the literature. Br J Neurosurg 20:296–300. doi:10.1080/02688690600999901

    Article  CAS  PubMed  Google Scholar 

  8. Anderson RCE, Kan P, Klimo P, et al. (2004) Complications of intracranial pressure monitoring in children with head trauma. J Neurosurg 101:53–58. doi:10.3171/ped.2004.101.2.0053

    PubMed  Google Scholar 

  9. Binz DD, Toussaint LG, Friedman JA (2009) Hemorrhagic complications of ventriculostomy placement: a meta-analysis. Neurocrit Care 10:253–256. doi:10.1007/s12028-009-9193-0

    Article  PubMed  Google Scholar 

  10. Eisenberg HM, Gary HE, Aldrich EF, et al. (1990) Initial CT findings in 753 patients with severe head injury. A report from the NIH traumatic coma data Bank. J Neurosurg 73:688–698. doi:10.3171/jns.1990.73.5.0688

    Article  CAS  PubMed  Google Scholar 

  11. Nazir S, O’Brien M, Qureshi NH, et al. (2009) Sensitivity of papilledema as a sign of shunt failure in children. J AAPOS 13:63–66. doi:10.1016/j.jaapos.2008.08.003

    Article  PubMed  Google Scholar 

  12. Rangwala LM, Liu GT (2007) Pediatric idiopathic intracranial hypertension. Surv Ophthalmol 52:597–617

    Article  PubMed  Google Scholar 

  13. Tuite G, Chong WK, Evanson J, et al. (1996) The effectiveness of papilledema as an indicator of raised intracranial pressure in children with craniosynostosis. Neurosurgery 38:272–278

    Article  CAS  PubMed  Google Scholar 

  14. Toutant SM, Klauber MR, Marshall LF, et al. (1984) Absent or compressed basal cisterns on first CT scan: ominous predictors of outcome in severe head injury. J Neurosurg 61:691–694. doi:10.3171/jns.1984.61.4.0691

    Article  CAS  PubMed  Google Scholar 

  15. Mizutani T, Manaka S, Tsutsumi H (1990) Estimation of intracranial pressure using computed tomography scan findings in patients with severe head injury. Surg Neurol 33:178–184

    Article  CAS  PubMed  Google Scholar 

  16. Chen W, Belle A, Cockrell C, et al. (2013) Automated midline shift and intracranial pressure estimation based on brain CT images. J Vis Exp. doi:10.3791/3871

    Google Scholar 

  17. Miller MT, Pasquale M, Kurek S, et al. (2004) Initial head computed tomographic scan characteristics have a linear relationship with initial intracranial pressure after trauma. J Trauma 56:967–972 discussion 972–973

    Article  PubMed  Google Scholar 

  18. Kouvarellis AJ, Rohlwink UK, Sood V, et al. (2011) The relationship between basal cisterns on CT and time-linked intracranial pressure in paediatric head injury. Childs Nerv Syst 27:1139–1144. doi:10.1007/s00381-011-1464-3

    Article  PubMed  Google Scholar 

  19. Bailey BM, Liesemer K, Statler KD, et al. (2012) Monitoring and prediction of intracranial hypertension in pediatric traumatic brain injury: clinical factors and initial head computed tomography. J Trauma Acute Care Surg 72:263–270. doi:10.1097/TA.0b013e31822a9512

    PubMed  Google Scholar 

  20. Tasker RC, Matthew DJ, Kendall B (1990) Computed tomography in the assessment of raised intracranial pressure in non-traumatic coma. Neuropediatrics 21:91–94. doi:10.1055/s-2008-1071469

    Article  CAS  PubMed  Google Scholar 

  21. Killer HE, Laeng HR, Flammer J, Groscurth P (2003) Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. Br J Ophthalmol 87:777–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sekhon MS, Griesdale DE, Robba C, et al. (2014) Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Med 40:1267–1274. doi:10.1007/s00134-014-3392-7

    Article  PubMed  Google Scholar 

  23. Pauwels EKJ, Bourguignon MH (2012) Radiation dose features and solid cancer induction in pediatric computed tomography. Med Princ Pract 21:508–515. doi:10.1159/000337404

    Article  PubMed  Google Scholar 

  24. Raksin PB, Alperin N, Sivaramakrishnan A, et al. (2003) Noninvasive intracranial compliance and pressure based on dynamic magnetic resonance imaging of blood flow and cerebrospinal fluid flow: review of principles, implementation, and other noninvasive approaches. Neurosurg Focus 14:e4

    Article  PubMed  Google Scholar 

  25. Alperin NJ, Lee SH, Loth F, et al. (2000) MR-intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology 217:877–885. doi:10.1148/radiology.217.3.r00dc42877

    Article  CAS  PubMed  Google Scholar 

  26. Muehlmann M, Koerte IK, Laubender RP, et al. (2013) Magnetic resonance-based estimation of intracranial pressure correlates with ventriculoperitoneal shunt valve opening pressure setting in children with hydrocephalus. Investig Radiol 48:543–547. doi:10.1097/RLI.0b013e31828ad504

    Article  Google Scholar 

  27. Leliefeld PH, Gooskens RHJM, Vincken KL, et al. (2008) Magnetic resonance imaging for quantitative flow measurement in infants with hydrocephalus: a prospective study. J Neurosurg Pediatr 2:163–170. doi:10.3171/PED/2008/2/9/163

    Article  PubMed  Google Scholar 

  28. Mase M, Yamada K, Banno T, et al. (1998) Quantitative analysis of CSF flow dynamics using MRI in normal pressure hydrocephalus. Acta Neurochir Suppl 71:350–353

    CAS  PubMed  Google Scholar 

  29. Poca MA, Sahuquillo J, Busto M, et al. (2002) Agreement between CSF flow dynamics in MRI and ICP monitoring in the diagnosis of normal pressure hydrocephalus. Sensitivity and specificity of CSF dynamics to predict outcome. Acta Neurochir Suppl 81:7–10

    CAS  PubMed  Google Scholar 

  30. Geeraerts T, Newcombe VFJ, Coles JP, et al. (2008) Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. Crit Care 12:R114. doi:10.1186/cc7006

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kimberly HH, Noble VE (2008) Using MRI of the optic nerve sheath to detect elevated intracranial pressure. Crit Care 12:181. doi:10.1186/cc7008

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kalantari H, Jaiswal R, Bruck I, et al. (2013) Correlation of optic nerve sheath diameter measurements by computed tomography and magnetic resonance imaging. Am J Emerg Med 31:1595–1597. doi:10.1016/j.ajem.2013.07.028

    Article  PubMed  Google Scholar 

  33. Shirodkar CG, Rao SM, Mutkule DP, et al. (2014) Optic nerve sheath diameter as a marker for evaluation and prognostication of intracranial pressure in Indian patients: an observational study. Indian J Crit Care Med 18:728–734. doi:10.4103/0972-5229.144015

    PubMed  PubMed Central  Google Scholar 

  34. Qayyum H, Ramlakhan S (2013) Can ocular ultrasound predict intracranial hypertension? A pilot diagnostic accuracy evaluation in a UK emergency department. Eur J Emerg Med 20:91–97. doi:10.1097/MEJ.0b013e32835105c8

    Article  PubMed  Google Scholar 

  35. Wang L, Feng L, Yao Y, et al. (2015) Optimal optic nerve sheath diameter threshold for the identification of elevated opening pressure on lumbar puncture in a Chinese population. PLoS One 10:e0117939. doi:10.1371/journal.pone.0117939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Amini A, Kariman H, Arhami Dolatabadi A, et al. (2013) Use of the sonographic diameter of optic nerve sheath to estimate intracranial pressure. Am J Emerg Med 31:236–239. doi:10.1016/j.ajem.2012.06.025

    Article  PubMed  Google Scholar 

  37. Maissan IM, Dirven PJAC, Haitsma IK, et al. (2015) Ultrasonographic measured optic nerve sheath diameter as an accurate and quick monitor for changes in intracranial pressure. J Neurosurg 1–5. doi: 10.3171/2014.10.JNS141197

  38. Nabeta HW, Bahr NC, Rhein J, et al. (2014) Accuracy of noninvasive intraocular pressure or optic nerve sheath diameter measurements for predicting elevated intracranial pressure in Cryptococcal meningitis. Open forum Infect Dis 1:1–8. doi:10.1093/o

    Article  Google Scholar 

  39. Strumwasser A, Kwan RO, Yeung L, et al. (2011) Sonographic optic nerve sheath diameter as an estimate of intracranial pressure in adult trauma. J Surg Res 170:265–271. doi:10.1016/j.jss.2011.03.009

    Article  PubMed  Google Scholar 

  40. Shofty B, Ben-Sira L, Constantini S, et al. (2012) Optic nerve sheath diameter on MR imaging: establishment of norms and comparison of pediatric patients with idiopathic intracranial hypertension with healthy controls. AJNR Am J Neuroradiol 33:366–369. doi:10.3174/ajnr.A2779

    Article  CAS  PubMed  Google Scholar 

  41. Ballantyne J, Hollman AS, Hamilton R, et al. (1999) Transorbital optic nerve sheath ultrasonography in normal children. Clin Radiol 54:740–742

    Article  CAS  PubMed  Google Scholar 

  42. Körber F, Scharf M, Moritz J, et al. (2005) Sonography of the optical nerve – experience in 483 children. RöFo 177:229–235. doi:10.1055/s-2004-813936

    PubMed  Google Scholar 

  43. Ballantyne S, O’Neill G, Hamilton R, Hollman A (2002) Observer variation in the sonographic measurement of optic nerve sheath diameter in normal adults. Eur J Ultrasound 15:145–149. doi:10.1016/S0929-8266(02)00036-8

    Article  CAS  PubMed  Google Scholar 

  44. Frisén L (1982) Swelling of the optic nerve head: a staging scheme. J Neurol Neurosurg Psychiatry 45:13–18

    Article  PubMed  PubMed Central  Google Scholar 

  45. Steffen H, Eifert B, Aschoff A, et al. (1996) The diagnostic value of optic disc evaluation in acute elevated intracranial pressure. Ophthalmol (Rochester, Minn) 103:1229–1232

    Article  CAS  Google Scholar 

  46. Digre KB, Nakamoto BK, Warner JEA, et al. (2009) A comparison of idiopathic intracranial hypertension with and without papilledema. Headache 49:185–193. doi:10.1111/j.1526-4610.2008.01324.x

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mathew NT, Ravishankar K, Sanin LC (1996) Coexistence of migraine and idiopathic intracranial hypertension without papilledema. Neurology 46:1226–1230

    Article  CAS  PubMed  Google Scholar 

  48. Aylward SC, Aronowitz C, Roach ES (2015) Intracranial hypertension without papilledema in children. J Child Neurol. doi:10.1177/0883073815587029

    Google Scholar 

  49. Faz G, Butler IJ, Koenig MK (2010) Incidence of papilledema and obesity in children diagnosed with idiopathic benign” intracranial hypertension: case series and review. J Child Neurol 25:1389–1392. doi:10.1177/0883073810364853

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen TC, Zeng A, Sun W, et al. (2008) Spectral domain optical coherence tomography and glaucoma. Int Ophthalmol Clin 48:29–45

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sihota R, Sony P, Gupta V, et al. (2006) Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci 47:2006–2010. doi:10.1167/iovs.05-1102

    Article  PubMed  Google Scholar 

  52. Hee MR, Baumal CR, Puliafito CA, et al. (1996) Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 103:1260–1270

    Article  CAS  PubMed  Google Scholar 

  53. Driessen C, Eveleens J, Bleyen I, et al. (2014) Optical coherence tomography: a quantitative tool to screen for papilledema in craniosynostosis. Childs Nerv Syst 30:1067–1073. doi:10.1007/s00381-014-2376-9

    PubMed  Google Scholar 

  54. Dagi LR, Tiedemann LM, Heidary G, et al. (2014) Using spectral-domain optical coherence tomography to detect optic neuropathy in patients with craniosynostosis. J Am Assoc Pediatr Ophthalmol Strabismus 18:543–549. doi:10.1016/j.jaapos.2014.07.177

    Article  Google Scholar 

  55. Gabriele ML, Ishikawa H, Wollstein G, et al. (2007) Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning. Invest Ophthalmol Vis Sci 48:3154–3160. doi:10.1167/iovs.06-1416

    Article  PubMed  PubMed Central  Google Scholar 

  56. Varma R, Bazzaz S, Bai M (2003) Optical tomography-measured retinal nerve fiber layer thickness in normal latinos. Invest Ophthalmol Vis Sci 44:3369–3373

    Article  PubMed  Google Scholar 

  57. Turk A, Ceylan OM, Arici C, et al. (2012) Evaluation of the nerve fiber layer and macula in the eyes of healthy children using spectral-domain optical coherence tomography. Am J Ophthalmol 153:552–559. doi:10.1016/j.ajo.2011.08.026

    Article  PubMed  Google Scholar 

  58. Leung MMP, Huang RYC, Lam AKC (2010) Retinal nerve fiber layer thickness in normal Hong Kong chinese children measured with optical coherence tomography. J Glaucoma 19:95–99. doi:10.1097/IJG.0b013e3181a98cfa

    Article  PubMed  Google Scholar 

  59. Yanni S, Wang J, Cheng C, et al. (2013) Normative reference ranges for the retinal nerve fiber layer, macula, and retinal layer thicknesses in children. Am J Ophthalmol 155:354–360. doi:10.1097/WAD.0b013e3181aba588.MRI

    Article  PubMed  Google Scholar 

  60. El-Dairi MA, Asrani SG, Enyedi LB, Freedman SF (2009) Optical coherence tomography in the eyes of normal children. Arch Ophthalmol 127:50–58. doi:10.1001/archophthalmol.2008.553

    Article  PubMed  Google Scholar 

  61. Sasapin P, Freedman S, Lokhnygina Y, et al. (2012) Longitudinal reproducibility of optical coherence tomography measurements in children. J Am Assoc Pediatr Ophthalmol Strabismus 29:997–1003. doi:10.1016/j.biotechadv.2011.08.021.Secreted

    Google Scholar 

  62. Vartin CV, Nguyen AM, Balmitgere T, et al. (2012) Detection of mild papilloedema using spectral domain optical coherence tomography. Br J Ophthalmol 96:375–379. doi:10.1136/bjo.2010.199562

    Article  PubMed  Google Scholar 

  63. Ahuja S, Anand D, Dutta TK, et al. (2015) Retinal nerve fiber layer thickness analysis in cases of papilledema using optical coherence tomography—a case control study. Clin Neurol Neurosurg 136:95–99. doi:10.1016/j.clineuro.2015.05.002

    Article  PubMed  Google Scholar 

  64. Scott CJ, Kardon RH, Lee AG, et al. (2010) Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale. Arch Ophthalmol 128:705–711. doi:10.1001/archophthalmol.2010.94

    Article  PubMed  Google Scholar 

  65. Kaufhold F, Kadas EM, Schmidt C, et al. (2012) Optic nerve head quantification in idiopathic intracranial hypertension by spectral domain OCT. PLoS One 7:e36965. doi:10.1371/journal.pone.0036965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Skau M, Yri H, Sander B, et al. (2012) Diagnostic value of optical coherence tomography for intracranial pressure in idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol:567–574. doi:10.1007/s00417-012-2039-z

  67. Group OS-SC for the NIIHS (2014) Baseline OCT measurements in the idiopathic intracranial hypertension treatment trial, part II: correlations and relationship to clinical features. Invest Ophthalmol Vis Sci 55:8173–8179. doi:10.1167/iovs.14-14961

    Article  Google Scholar 

  68. Skau M, Milea D, Sander B, et al. (2011) OCT for optic disc evaluation in idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol 249:723–730. doi:10.1007/s00417-010-1527-2

    Article  PubMed  Google Scholar 

  69. Klingelhöfer J, Conrad B, Benecke R, et al. (1988) Evaluation of intracranial pressure from transcranial Doppler studies in cerebral disease. J Neurol 235:159–162

    Article  PubMed  Google Scholar 

  70. Gosling RG, King DH (1974) Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med 67:447–449

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Michel E, Zernikow B (1998) Gosling’s Doppler pulsatility index revisited. Ultrasound Med Biol 24:597–599

    Article  CAS  PubMed  Google Scholar 

  72. (2004) AAN Guideline Summary for Clinicians: Assessment of Transcranial Doppler Ultrasonography.

  73. Ragauskas A, Bartusis L, Piper I, et al. (2014) Improved diagnostic value of a TCD-based non-invasive ICP measurement method compared with the sonographic ONSD method for detecting elevated intracranial pressure. Neurol Res 36:607–614. doi:10.1179/1743132813Y.0000000308

    Article  PubMed  Google Scholar 

  74. Bellner J, Romner B, Reinstrup P, et al. (2004) Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 62:45–51 . doi:10.1016/j.surneu.2003.12.007discussion 51

    Article  PubMed  Google Scholar 

  75. Wang Y, Duan Y-Y, Zhou H-Y, et al. (2014) Middle cerebral arterial flow changes on transcranial color and spectral Doppler sonography in patients with increased intracranial pressure. J Ultrasound Med 33:2131–2136. doi:10.7863/ultra.33.12.2131

    Article  PubMed  Google Scholar 

  76. Hunter G, Voll C, Rajput M (2010) Utility of transcranial doppler in idiopathic intracranial hypertension. Can J Neurol Sci 37:235–239

    Article  PubMed  Google Scholar 

  77. Prunet B, Asencio Y, Lacroix G, et al. (2012) Noninvasive detection of elevated intracranial pressure using a portable ultrasound system. Am J Emerg Med 30:936–941. doi:10.1016/j.ajem.2011.05.005

    Article  PubMed  Google Scholar 

  78. Wakerley BR, Kusuma Y, Yeo LLL, et al. (2014) Usefulness of transcranial doppler-derived cerebral hemodynamic parameters in the noninvasive assessment of intracranial pressure. J Neuroimaging 25:111–116. doi:10.1111/jon.12100

    Article  PubMed  Google Scholar 

  79. Rainov NG, Weise JB, Burkert W (2000) Transcranial Doppler sonography in adult hydrocephalic patients. Neurosurg Rev 23:34–38

    Article  CAS  PubMed  Google Scholar 

  80. Zweifel C, Czosnyka M, Carrera E, et al. (2012) Reliability of the blood flow velocity pulsatility index for assessment of intracranial and cerebral perfusion pressures in head-injured patients. Neurosurgery 71:853–861. doi:10.1227/NEU.0b013e3182675b42

    Article  PubMed  Google Scholar 

  81. Behrens A, Lenfeldt N, Ambarki K, et al. (2010) Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. Neurosurgery 66:1050–1057

    Article  PubMed  Google Scholar 

  82. Hanlo PW, Gooskens RH, Nijhuis IJ, et al. (1995) Value of transcranial Doppler indices in predicting raised ICP in infantile hydrocephalus. A study with review of the literature. Childs Nerv Syst 11:595–603

    Article  CAS  PubMed  Google Scholar 

  83. Ahmad M, Legrand M, Lukaszewicz A-C, et al. (2013) Transcranial Doppler monitoring may be misleading in prediction of elevated ICP in brain-injured patients. Intensive Care Med 39:1150–1151. doi:10.1007/s00134-013-2885-0

    Article  PubMed  Google Scholar 

  84. Banich M, Compton R (2011) Cognitive neuroscience, 3rd edn. Cengage Learning, Belmont

    Google Scholar 

  85. Creel D (2015) Visually Evoked Potentials. In: Webvision. http://webvision.med.utah.edu/book/electrophysiology/visually-evoked-potentials/. Accessed 22 Jul 2015

  86. Sklar FH, Ehle AL, Clark WK (1979) Visual evoked potentials: a noninvasive technique to monitor patients with shunted hydrocephalus. Neurosurgery 4:529–534

    Article  CAS  PubMed  Google Scholar 

  87. Fichsel H (1976) Diagnosis of hydrocephalus. Changes in visual evoked potentials in children with progressive hydrocephalus internus. Fortschr Med 94:1141–1142

    CAS  PubMed  Google Scholar 

  88. Sjöström A, Uvebrant P, Roos A (1995) The light-flash-evoked response as a possible indicator of increased intracranial pressure in hydrocephalus. Childs Nerv Syst 11:381–387 discussion 387

    Article  PubMed  Google Scholar 

  89. Vieira MADCS, Cavalcanti MDAS, Costa DL, et al. (2015) Visual evoked potentials show strong positive association with intracranial pressure in patients with cryptococcal meningitis. Arq Neuropsiquiatr 73:309–313. doi:10.1590/0004-282X20150002

    Article  PubMed  Google Scholar 

  90. York DH, Pulliam MW, Rosenfeld JG, Watts C (1981) Relationship between visual evoked potentials and intracranial pressure. J Neurosurg 55:909–916. doi:10.3171/jns.1981.55.6.0909

    Article  CAS  PubMed  Google Scholar 

  91. Gumerlock MK, York D, Durkis D (1994) Visual evoked responses as a monitor of intracranial pressure during hyperosmolar blood-brain barrier disruption. Acta Neurochir Suppl (Wien) 60:132–135

    CAS  Google Scholar 

  92. Desch LW (2001) Longitudinal stability of visual evoked potentials in children and adolescents with hydrocephalus. Dev Med Child Neurol 43:113–117

    Article  CAS  PubMed  Google Scholar 

  93. Andersson L, Sjölund J, Nilsson J (2012) Flash visual evoked potentials are unreliable as markers of ICP due to high variability in normal subjects. Acta Neurochir 154:121–127. doi:10.1007/s00701-011-1152-9

    Article  PubMed  Google Scholar 

  94. Sutter EE (2010) Noninvasive testing methods: multifocal electrophysiology. In: Darlene A. Dartt (ed) Encycl. Eye. pp 142–160

  95. (2008) Guideline 9B: Guidelines on Visual Evoked Potentials.

  96. LaManna JC (2007) In situ measurements of brain tissue hemoglobin saturation and blood volume by reflectance spectrophotometry in the visible spectrum. J Biomed Opt 12:062103. doi:10.1117/1.2804184

    Article  PubMed  CAS  Google Scholar 

  97. Ghosh A, Elwell C, Smith M (2012) Review article: cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg 115:1373–1383. doi:10.1213/ANE.0b013e31826dd6a6

    Article  CAS  PubMed  Google Scholar 

  98. Czosnyka M, Smielewski P, Kirkpatrick P, et al. (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–17 discussion 17–9

    Article  CAS  PubMed  Google Scholar 

  99. Zweifel C, Lavinio A, Steiner LA, et al. (2008) Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus 25:E2. doi:10.3171/FOC.2008.25.10.E2

    Article  PubMed  Google Scholar 

  100. Steiner LA, Czosnyka M, Piechnik SK, et al. (2002) Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 30:733–738

    Article  PubMed  Google Scholar 

  101. Lee JK, Kibler KK, Benni PB, et al. (2009) Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke 40:1820–1826. doi:10.1161/STROKEAHA.108.536094

    Article  PubMed  Google Scholar 

  102. Zweifel C, Castellani G, Czosnyka M, et al. (2010) Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J Neurotrauma 27:1951–1958. doi:10.1089/neu.2010.1388

    Article  PubMed  Google Scholar 

  103. Kampfl A, Pfausler B, Denchev D, et al. (1997) Near infrared spectroscopy (NIRS) in patients with severe brain injury and elevated intracranial pressure. A pilot study. Acta Neurochir Suppl 70:112–114

    CAS  PubMed  Google Scholar 

  104. Wagner BP, Pfenninger J (2002) Dynamic cerebral autoregulatory response to blood pressure rise measured by near-infrared spectroscopy and intracranial pressure. Crit Care Med 30:2014–2021. doi:10.1097/01.CCM.0000025889.96603.B0

    Article  CAS  PubMed  Google Scholar 

  105. Blaivas M, Theodoro D, Sierzenski PR (2003) Elevated intracranial pressure detected by bedside emergency ultrasonography of the optic nerve sheath. Acad Emerg Med 10:376–381. doi:10.1111/j.1553-2712.2003.tb01352.x

    Article  PubMed  Google Scholar 

  106. Wall M (2010) Idiopathic intracranial hypertension. Neurol Clin 28:593–617. doi:10.1016/j.ncl.2010.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  107. Alvarez-Fernández JA, Pérez-Quintero R (2009) Use of transcranial Doppler ultrasound in the management of post-cardiac arrest syndrome. Resuscitation 80:1321–1322. doi:10.1016/j.resuscitation.2009.07.011

    Article  PubMed  Google Scholar 

  108. Ohle R, McIsaac SM, Woo MY, Perry JJ (2015) Sonography of the optic nerve sheath diameter for detection of raised intracranial pressure compared to computed tomography: a systematic review and meta-analysis. J Ultrasound Med 34:1285–1294. doi: 10.7863/ultra.34.7.1285

Download references

Acknowledgments

The authors acknowledge Dr. Steve Siegel for review writing guidance. The first author of this publication was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under award number TL1TR000138. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Taylor.

Ethics declarations

Funding

The first author of this publication was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under award number TL1TR000138. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not require any form of informed consent.

Electronic supplementary material

Online Resource 1

(PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Gerety, P., Aleman, T. et al. Noninvasive methods of detecting increased intracranial pressure. Childs Nerv Syst 32, 1371–1386 (2016). https://doi.org/10.1007/s00381-016-3143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-016-3143-x

Keywords

Navigation