Skip to main content

Advertisement

Log in

Advanced MR imaging in hemispheric low-grade gliomas before surgery; the indications and limits in the pediatric age

  • Special Annual Issue
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Advanced magnetic resonance imaging (MRI) techniques is an umbrella term that includes diffusion (DWI) and diffusion tensor (DTI), perfusion (PWI), spectroscopy (MRS), and functional (fMRI) imaging. These advanced modalities have improved the imaging of brain tumors and provided valuable additional information for treatment planning. Despite abundant literature on advanced MRI techniques in adult brain tumors, few reports exist for pediatric brain ones, potentially because of technical challenges.

Review of the literature

The authors review techniques and clinical applications of DWI, PWI, MRS, and fMRI, in the setting of pediatric hemispheric low-grade gliomas.

Personal experience

The authors propose their personal experience to highlight benefits and limits of advanced MR imaging in diagnosis, grading, and presurgical planning of pediatric hemispheric low-grade gliomas.

Discussion

Advanced techniques should be used as complementary tools to conventional MRI, and in theory, the combined use of the three techniques should ensure achieving the best results in the diagnosis of hemispheric low-grade glioma and in presurgical planning to maximize tumor resection and preserve brain function.

Future perspectives

In the setting of pediatric neurooncology, these techniques can be used to distinguish low-grade from high-grade tumor. However, these methods have to be applied on a large scale to understand their real potential and clinical relapse, and further technical development is required to reduce the excessive scan times and other technical limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Young GS (2007) Advanced MRI of adult brain tumors. Neurol Clin 25(4):947–973

    Article  PubMed  Google Scholar 

  2. Sievert AJ, Fisher MJ (2009) Pediatric low-grade gliomas. J Child Neurol 24(11):1397–1408

    Article  PubMed  PubMed Central  Google Scholar 

  3. Saunders DE, Thompson C, Gunny R, Jones R, Cox T, Chong WK (2007) Magnetic resonance imaging protocols for pediatric neuroradiology. Pediatr Radiol 37(8):789–797

    Article  PubMed  PubMed Central  Google Scholar 

  4. Panigrahy A, Blüml S (2009) Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI). J Child Neurol 24(11):1343–1365

    Article  PubMed  Google Scholar 

  5. Ho CY, Cardinal JS, Kamer AP, Kralik SF (2015) Relative cerebral blood volume from dynamic susceptibility contrast perfusion in the grading of pediatric primary brain tumors. Neuroradiology 57(3):299–306

    Article  PubMed  Google Scholar 

  6. Yeom KW, Mitchell LA, Lober RM, Barnes PD, Vogel H, Fisher PG, Edwards MS (2014) Arterial spin-labeled perfusion of pediatric brain tumors. AJNR Am J Neuroradiol 35(2):395–401

    Article  CAS  PubMed  Google Scholar 

  7. Law M, Yang S, Babb JS, et al. (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 25:746–755

    PubMed  Google Scholar 

  8. Caulo M, Panara V, Tortora D, et al. (2014) Data-driven grading of brain gliomas: a multiparametric MR imaging study. Radiology 272(2):494–503

    Article  PubMed  Google Scholar 

  9. Roy B, Gupta RK, Maudsley AA, et al. (2013) Utility of multiparametric 3 T MRI for glioma characterization. Neuroradiology 5(55):603–613

    Article  Google Scholar 

  10. Cha S, Lupo JM, Chen MH, et al. (2007) Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Am J Neuroradiol 28:1078–1084

    Article  CAS  PubMed  Google Scholar 

  11. Boria MJ, Plaza MJ, Altman N, Saigal G (2013) Conventional and advanced MRI features of pediatric intracranial tumors: supratentorial tumors. AJR Am J Roentgenol 200(5):W483–W503

    Article  Google Scholar 

  12. Cebeci H, Aydin O, Ozturk-Isik E, Gumus C, Inecikli F, Bekar A, Kocaeli H, Hakyemez B (2014) Assesment of perfusion in glial tumors with arterial spin labeling; comparison with dynamic susceptibility contrast method. Eur J Radiol 83(10):1914–1919

    Article  CAS  PubMed  Google Scholar 

  13. Ball WS Jr, Holland SK (2001) Perfusion imaging in the pediatric patient. Magn Reson Imaging Clin N Am 9(1):207–230

    PubMed  Google Scholar 

  14. Ho CY, Cardinal JS, Kamer AP, Lin C, Kralik SF (2016) Contrast leakage patterns from dynamic susceptibility contrast perfusion MRI in the grading of primary pediatric brain tumors. AJNR Am J Neuroradiol 37(3):544–551

    Article  CAS  PubMed  Google Scholar 

  15. Lefranc M, Monet P, Desenclos C, Peltier J, Fichten A, Toussaint P, Sevestre H, Deramond H, Le Gars D (2012) Perfusion MRI as a neurosurgical tool for improved targeting in stereotactic tumor biopsies. Stereotact Funct Neurosurg 90(4):240–247

    Article  CAS  PubMed  Google Scholar 

  16. Chaskis C, Stadnik T, Michotte A, Van Rompaey K, D’Haens J (2006) Prognostic value of perfusion-weighted imaging in brain glioma: a prospective study. Acta Neurochir 148(3):277–285 discussion 285

    Article  CAS  PubMed  Google Scholar 

  17. Essig M, Shiroishi MS, Nguyen TB, Saake M, Provenzale JM, Enterline D, Anzalone N, Dörfler A, Rovira A, Wintermark M, Law M (2013) Perfusion MRI: the five most frequently asked technical questions. AJR Am J Roentgenol 200(1):24–34

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schneider JF, Viola A, Confort-Gouny S, Ayunts K, Le Fur Y, Viout P, et al. (2007) Infratentorial pediatric brain tumors: the value of new imaging modalities. J Neuroradiol 34(1):49–58

    Article  CAS  PubMed  Google Scholar 

  19. Porto L, Jurcoane A, Schwabe D, Kieslich M, Hattingen E (2013) Differentiation between high and low grade tumours in paediatric patients by using apparent diffusion coefficients. Eur J Paediatr Neurol 17(3):302–307

    Article  PubMed  Google Scholar 

  20. Rumboldt Z, Camacho DL, Lake D, Welsh CT, Castillo M (2006) Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR Am J Neuroradiol 27(6):1362–1369

    CAS  PubMed  Google Scholar 

  21. Jaremko JL, Jans LB, Coleman LT, Ditchfield MR (2010) Value and limitations of diffusion-weighted imaging in grading and diagnosis of pediatric posterior fossa tumors. AJNR Am J Neuroradiol 31(9):1613–1616

    Article  CAS  PubMed  Google Scholar 

  22. Schneider JF, Confort-Gouny S, Viola A, Le Fur Y, Viout P, Bennathan M, et al. (2007) Multiparametric differentiation of posterior fossa tumors in children using diffusion-weighted imaging and short echo-time 1H-MR spectroscopy. J Magn Reson Imaging 26(6):1390–1398

    Article  CAS  PubMed  Google Scholar 

  23. Poretti A, Meoded A, Huisman TA (2012) Neuroimaging of pediatric posterior fossa tumors including review of the literature. J Magn Reson Imaging 35(1):32–47

    Article  PubMed  Google Scholar 

  24. Peet AC, Lateef S, MacPherson L, Natarajan K, Sgouros S, Grundy RG (2007) Short echo time 1H magnetic resonance spectroscopy of childhood brain tumours. Childs Nerv Syst 23(2):163–169

    Article  CAS  PubMed  Google Scholar 

  25. Peet AC, Arvanitis TN, Auer DP, Davies NP, Hargrave D, Howe FA, Jaspan T, Leach MO, Macarthur D, MacPherson L, Morgan PS, Natarajan K, Payne GS, Saunders D, Grundy RG, Functional Imaging Group CCLG (2008) The value of magnetic resonance spectroscopy in tumour imaging. Arch Dis Child 93(9):725–727

    Article  PubMed  Google Scholar 

  26. Zakrzewski K, Kubicki M, Polis L, Nowosławska E, Liberski PP (1999) Proton magnetic resonance spectroscopy of primary pediatric brain tumors: neuropathological correlation. Folia Neuropathol 37(3):148–151

    CAS  PubMed  Google Scholar 

  27. Barker PB (2001) N-acetyl aspartate—a neuronal marker? Ann Neurol 49(4):423–424

    Article  CAS  PubMed  Google Scholar 

  28. Panigrahy A, Krieger MD, Gonzalez-Gomez I, et al. (2006) Quantitative short echo time 1H-MR spectroscopy of untreated pediatric brain tumors: preoperative diagnosis and characterization. AJNR Am J Neuroradiol 27(3):560–572

    CAS  PubMed  Google Scholar 

  29. Warren KE (2004) NMR spectroscopy and pediatric brain tumors. Oncologist 9(3):312–318

    Article  PubMed  Google Scholar 

  30. Shiroishi MS, Panigrahy A, Moore KR, Nelson MD Jr, Gilles FH, Gonzalez-Gomez I, Blüml S (2015) Combined MRI and MRS improves pre-therapeutic diagnoses of pediatric brain tumors over MRI alone. Neuroradiology 57(9):951–956

    Article  PubMed  PubMed Central  Google Scholar 

  31. Porto L, Kieslich M, Franz K, Lehrbecher T, Pilatus U, Hattingen E (2010) Proton magnetic resonance spectroscopic imaging in pediatric low-grade gliomas. Brain Tumor Pathol 27(2):65–70

    Article  PubMed  Google Scholar 

  32. Rossi A, Garrè ML, Ravegnani M, Nozza P, Abbruzzese A, Giangaspero F, Tortori-Donati P (2008) Bilateral germinoma of the basal ganglia. Pediatric blood. Cancer 50(1):177–179

    Google Scholar 

  33. Bizzi A, Blasi V, Falini A, Ferroli P, Cadioli M, Danesi U, Aquino D, Marras C, Caldiroli D, Broggi G (2008) Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology 248(2):579–589

    Article  PubMed  Google Scholar 

  34. Petrella JR, Shah LM, Harris KM, Friedman AH, George TM, Sampson JH, Pekala JS, Voyvodic JT (2006) Preoperative functional MR imaging localization of language and motor areas: effect on therapeutic decision making in patients with potentially resectable brain tumors. Radiology 240(3):793–802

    Article  PubMed  Google Scholar 

  35. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Caulo M, Esposito R, Mantini D, Briganti C, Sestieri C, Mattei PA, Colosimo C, Romani GL, Tartaro A (2011) Comparison of hypothesis- and a novel hybrid data/hypothesis-driven method of functional MR imaging analysis in patients with brain gliomas. AJNR Am J Neuroradiol 32(6):1056–1064

    Article  CAS  PubMed  Google Scholar 

  37. Albright AL, Sposto R, Holmes E, Zeltzer PM, Finlay JL, Wisoff JH, Berger MS, Packer RJ, Pollack IF (2000) Correlation of neurosurgical subspecialization with outcomes in children with malignant brain tumors. Neurosurgery 47(4):879–885

    Article  CAS  PubMed  Google Scholar 

  38. Souweidanea MM, Kim KHS, McDowall R, Ruge MI, Lis E, Krol G, Hirsch J (1999) Brain mapping in sedated infants and young children with passive-functional magnetic resonance imaging. Pediatr Neurosurg 30:86–92

    Article  Google Scholar 

  39. Dueck MH, Petzke F, Gerbershagen HJ, Paul M, Heßelmann V, Girnus R, Krug B, Sorger B, Goebel R, Lehrke R, Sturm V, Boerner U (2005) Propofol attenuates responses of the auditory cortex to acoustic stimulation in a dose-dependent manner: a fMRI study. Acta Anaesthesiol Scand 49(6):784–791

    Article  CAS  PubMed  Google Scholar 

  40. Ogg RJ, Laningham FH, Clarke D, et al. (2009) Passive range of motion functional magnetic resonance imaging localizing sensorimotor cortex in sedated children. J Neurosurg Pediatrics 4:317–322

    Article  Google Scholar 

  41. Suarez RO, Taimouri V, Boyer K, Vega C, Rotenberg A, Madsen JR, Loddenkemper T, Duffy FH, Prabhu SP, Warfield SK (2014) Passive fMRI mapping of language function for pediatric epilepsy surgical planning: validation using Wada, ECS, and FMAER. Epilepsy Res 108(10):1874–1888

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tie Y, Rigolo L, Norton IH, Huang RY, Wu W, Orringer D, Mukundan S Jr, Golby AJ (2014) Defining language networks from resting-state fMRI for surgical planning: a feasibility study. Hum Brain Mapp 35(3):1018–1030

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Gaudino.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaudino, S., Russo, R., Verdolotti, T. et al. Advanced MR imaging in hemispheric low-grade gliomas before surgery; the indications and limits in the pediatric age. Childs Nerv Syst 32, 1813–1822 (2016). https://doi.org/10.1007/s00381-016-3142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-016-3142-y

Keywords

Navigation