Skip to main content

Advertisement

Log in

In spina bifida aperta, muscle ultrasound can quantify the “second hit of damage”

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

In spina bifida aperta (SBA), the “second-hit hypothesis” addresses consequences by delayed neurological damage superimposed upon the congenital myelomeningocele (MMC). This secondary damage is postulated to underlie the disappearance of leg movements shortly after birth. Innovative fetal surgery might prevent this, but results are methodologically hard to prove in small and heterogeneous treatment groups. We reasoned that delayed postnatal alterations in muscle ultrasound density (MUD = muscle echogenicity) could quantitatively reflect consequences by “the second hit” of damage. In the present study, we investigated whether delayed postnatal leg-MUD alterations are associated with postnatal muscle function loss.

Methods

We cross-sectionally assessed leg-MUD in 16 postnatally operated SBA children (MMC-L5; at 0, 6, and 12 months; in n = 11/16; 11/16, and 15/16 children, respectively) and compared outcomes with 13 healthy control children. Additionally, we assessed SBA MUD caudal and cranial to the MMC and calculated MMC-L5 impact by: dMUD(MMC-L5) = [MUDcalf muscle/S1–2] − [MUDquadriceps muscle/L2–4] and associated outcomes with leg muscle function caudal to the MMC.

Results

At 0 month, clinically discernible dMUD was more often increased in SBA than in control newborns (p < .05), but a relationship between absolute quantitative differences and leg muscle dysfunction was still lacking. At 6–12 months, additionally increased dMUD outcomes coincided with SBA leg muscle dysfunction (p < .05).

Conclusions

In post-neonatal SBA, secondarily increased dMUD (i.e., MMC impact) coincides with leg muscle dysfunction. This may implicate that muscle ultrasound could provide a quantitative tool to assess the neuromuscular impact by the second hit of damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Leg-dMUD in SBA vs controls [0 months, 3 (−15 to 29) vs 0 (−5 to 10); 6 months, 22 (−6 to 40) vs 11 (−6 to 19); and 12 months, 18 (1–39) vs 8 (−6–13); medians (ranges)]

References

  1. Adzick NS, Thom EA, Spong CY et al (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004

    Article  PubMed  CAS  Google Scholar 

  2. Biggio JR Jr, Owen J, Wenstrom KD, Oakes WJ (2001) Can prenatal ultrasound findings predict ambulatory status in fetuses with open spina bifida? Am J Obstet Gynecol 185:1016–1020

    Article  PubMed  Google Scholar 

  3. Brandsma R, Verbeek RJ, Maurits NM et al (2012) Visual assessment of segmental muscle ultrasound images in spina bifida aperta. Ultrasound Med Biol 38:1339–1344

    Article  PubMed  Google Scholar 

  4. Coniglio SJ, Anderson SM, Ferguson JE 2nd (1996) Functional motor outcome in children with myelomeningocele: correlation with anatomic level on prenatal ultrasound. Dev Med Child Neurol 38:675–680

    Article  PubMed  CAS  Google Scholar 

  5. Correia-Pinto J, Reis JL, Hutchins GM et al (2002) In utero meconium exposure increases spinal cord necrosis in a rat model of myelomeningocele. J Pediatr Surg 37:488–492

    Article  PubMed  Google Scholar 

  6. Danzer E, Gerdes M, Bebbington MW, Koh J, Adzick SN, Johnson MP (2011) Fetal myelomeningocele surgery: preschool functional status using the functional independence measure for children (WeeFIM). Childs Nerv Syst 27:1083–1088

    Article  PubMed  Google Scholar 

  7. Danzer E, Johnson MP, Adzick NS (2012) Fetal surgery for myelomeningocele: progress and perspectives. Dev Med Child Neurol 54:8–14

    Article  PubMed  Google Scholar 

  8. Drewek MJ, Bruner JP, Whetsell WO, Tulipan N (1997) Quantitative analysis of the toxicity of human amniotic fluid to cultured rat spinal cord. Pediatr Neurosurg 27:190–193

    Article  PubMed  CAS  Google Scholar 

  9. Heckmatt JZ, Leeman S, Dubowitz V (1982) Ultrasound imaging in the diagnosis of muscle disease. J Pediatr 101:656–660

    Article  PubMed  CAS  Google Scholar 

  10. Heckmatt JZ, Pier N, Dubowitz V (1988) Assessment of quadriceps femoris muscle atrophy and hypertrophy in neuromuscular disease in children. J Clin Ultrasound 16:177–181

    Article  PubMed  CAS  Google Scholar 

  11. Heep A, Cremer R, Sival D (2011) Prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:2555, author reply 2556

    PubMed  CAS  Google Scholar 

  12. Heffez DS, Aryanpur J, Hutchins GM, Freeman JM (1990) The paralysis associated with myelomeningocele: clinical and experimental data implicating a preventable spinal cord injury. Neurosurgery 26:987–992

    Article  PubMed  CAS  Google Scholar 

  13. Hutchins GM, Meuli M, Meuli-Simmen C, Jordan MA, Heffez DS, Blakemore KJ (1996) Acquired spinal cord injury in human fetuses with myelomeningocele. Pediatr Pathol Lab Med 16:701–712

    Article  PubMed  CAS  Google Scholar 

  14. Kohl T, Tchatcheva K, Merz W et al (2009) Percutaneous fetoscopic patch closure of human spina bifida aperta: advances in fetal surgical techniques may obviate the need for early postnatal neurosurgical intervention. Surg Endosc 23:890–895

    Article  PubMed  Google Scholar 

  15. Lamminen A, Jaaskelainen J, Rapola J, Suramo I (1988) High-frequency ultrasonography of skeletal muscle in children with neuromuscular disease. J Ultrasound Med 7:505–509

    PubMed  CAS  Google Scholar 

  16. Maurits NM, Bollen AE, Windhausen A, De Jager AE, Van Der Hoeven JH (2003) Muscle ultrasound analysis: normal values and differentiation between myopathies and neuropathies. Ultrasound Med Biol 29:215–225

    Article  PubMed  Google Scholar 

  17. Maurits NM, Beenakker EA, van Schaik DE, Fock JM, van der Hoeven JH (2004) Muscle ultrasound in children: normal values and application to neuromuscular disorders. Ultrasound Med Biol 38:1017–1027

    Article  Google Scholar 

  18. Meuli M, Meuli-Simmen C, Hutchins GM et al (1995) In utero surgery rescues neurological function at birth in sheep with spina bifida. Nat Med 1:342–347

    Article  PubMed  CAS  Google Scholar 

  19. Meuli M, Meuli-Simmen C, Yingling CD et al (1995) Creation of myelomeningocele in utero: a model of functional damage from spinal cord exposure in fetal sheep. J Pediatr Surg 30:1028–1032, discussion 1032–3

    Article  PubMed  CAS  Google Scholar 

  20. Meuli M, Meuli-Simmen C, Hutchins GM, Seller MJ, Harrison MR, Adzick NS (1997) The spinal cord lesion in human fetuses with myelomeningocele: implications for fetal surgery. J Pediatr Surg 32:448–452

    Article  PubMed  CAS  Google Scholar 

  21. Pillen S, Verrips A, van Alfen N, Arts IM, Sie LT, Zwarts MJ (2007) Quantitative skeletal muscle ultrasound: diagnostic value in childhood neuromuscular disease. Neuromuscul Disord 17:509–516

    Article  PubMed  CAS  Google Scholar 

  22. Schmidt R, Voit T (1993) Ultrasound measurement of quadriceps muscle in the first year of life. Normal values and application to spinal muscular atrophy. Neuropediatrics 24:36–42

    Article  PubMed  CAS  Google Scholar 

  23. Scholten RR, Pillen S, Verrips A, Zwarts MJ (2003) Quantitative ultrasonography of skeletal muscles in children: normal values. Muscle Nerve 27:693–698

    Article  PubMed  CAS  Google Scholar 

  24. Sival DA, Begeer JH, Staal-Schreinemachers AL, Vos-Niel JM, Beekhuis JR, Prechtl HF (1997) Perinatal motor behaviour and neurological outcome in spina bifida apert. Early Hum Dev 50:27–37

    Article  PubMed  CAS  Google Scholar 

  25. Sival DA, van Weerden TW, Vles JS et al (2004) Neonatal loss of motor function in human spina bifida aperta. Pediatrics 114:427–434

    Article  PubMed  Google Scholar 

  26. Sival DA, Brouwer OF, Bruggink JL et al (2006) Movement analysis in neonates with spina bifida aperta. Early Hum Dev 84:227–234

    Article  Google Scholar 

  27. Sival DA, Verbeek RJ, Brouwer OF, Sollie KM, Bos AF, den Dunnen WF (2008) Spinal hemorrhages are associated with early neonatal motor function loss in human spina bifida aperta. Early Hum Dev 84:423–431

    Article  PubMed  CAS  Google Scholar 

  28. Verbeek RJ, van der Hoeven JH, Sollie KM et al (2009) Muscle ultrasound density in human fetuses with spina bifida aperta. Early Hum Dev 85:519–523

    Article  PubMed  CAS  Google Scholar 

  29. Verbeek RJ, Heep A, Maurits NM et al (2012) Fetal endoscopic myelomeningocele closure preserves segmental neurological function. Dev Med Child Neurol 54:15–22

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all infants and parents who cooperated in this study. We wish to thank P.B. Mulder (muscle ultrasonographer) for recruiting healthy pregnant women. We thank A.L. Staal-Schreinemacher for the clinical information and K.M. Sollie for her help and support at the obstetrics department. We thank M. Gremmer for the availability of the ultrasound equipment and H. Kunst, J. Bijmolt, J. Sikkema, G. Oosterhof, H. Hooijsma, and M. Luursema for their administrative help.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sival.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbeek, R.J., van der Hoeven, J.H., Maurits, N.M. et al. In spina bifida aperta, muscle ultrasound can quantify the “second hit of damage”. Childs Nerv Syst 29, 469–474 (2013). https://doi.org/10.1007/s00381-012-1947-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-012-1947-x

Keywords

Navigation