Skip to main content

Advertisement

Log in

Chemical priming for spinal cord injury: a review of the literature part II—potential therapeutics

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Spinal cord injury is a complex cascade of reactions secondary to the initial mechanical trauma that puts into action the innate properties of the injured cells, the circulatory, inflammatory, and chemical status around them, into a non-permissive and destructive environment for neuronal function and regeneration. Priming means putting a cell, in a state of “arousal” towards better function. Priming can be mechanical as trauma is known to enhance activity in cells.

Materials and methods

A comprehensive review of the literature was performed to better understand the possible chemical primers used for spinal cord injuries.

Conclusions

Taken together, many studies have shown various promising results using the substances outlined herein for treating SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spencer T, Filbin MT (2004) A role for cAMP in regeneration of the adult mammalian CNS. J Anat 204:49–55

    PubMed  CAS  Google Scholar 

  2. Bradbury EJ, Khemani S, Von R, King PJV, McMahon SB (1999) NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord. Eur J Neurosci 11:3873–3883

    PubMed  CAS  Google Scholar 

  3. Nakahara Y, Gage FH, Tuszynski MH (1996) Grafts of firoblasts genetically modified to secrete NGF, BDNF, NT-3, or basic FGF elicit differential responses in the adult spinal cord. Cell Transplant 5:191–204

    PubMed  CAS  Google Scholar 

  4. Grill R, Murai K, Blesch A, Gage FH, Tuszynski MH (1997) Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 17:5560–5572

    PubMed  CAS  Google Scholar 

  5. Himes BT, Liu Y, Solowska JM, Snyder EY, Fischer I, Tessler A (2001) Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke’s nucleus neurons after spinal cord hemisection in adult rats. J Neurosci Res 65:549–564

    PubMed  CAS  Google Scholar 

  6. Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME (1994) Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367:170–173

    PubMed  CAS  Google Scholar 

  7. Jones LL, Oudega M, Bunge MB, Tuszynski MH (2001) Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J Physiol 83:533-Pt 1

    Google Scholar 

  8. Koshinaga M, Sanon HR, Whittemore SR (1993) Altered acidic and basic fibroblast growth factor expression following spinal cord injury. Exp Neurol 120:32–48

    PubMed  CAS  Google Scholar 

  9. Madiai F, Hussain SR, Goettl VM, Burry RW, Stephens RL, Hackshaw KV (2003) Upregulation of FGF-2 in reactive spinal cord astrocytes following unilateral lumbar spinal nerve ligation. Exp Brain Res 148:366–376

    PubMed  CAS  Google Scholar 

  10. Tassi E, Walter S, Aigner A, Cabal-Manzano RH, Ray R, Reier PJ, Wellstein A (2007) Effects on neurite outgrowth and cell survival of a secreted fibroblast growth factor binding protein upregulated during spinal cord injury. Am J Physiol Regul Integr Comp Physiol 293:R775–R783

    PubMed  CAS  Google Scholar 

  11. Cuevas P, Giménez-Gallego G (1997) Role of fibroblast growth factors in neural trauma. Neurol Res 19:254–256

    PubMed  CAS  Google Scholar 

  12. Teng YD, Mocchetti I, Wrathall JR (1998) Basic and acidic fibroblast growth factors protect spinal motor neurones in vivo after experimental spinal cord injury. Eur J Neurosci 10:798–802

    PubMed  CAS  Google Scholar 

  13. Laird JM, Mason GS, Thomas KA, Hargreaves RJ, Hill RG (1995) Acidic fibroblast growth factor stimulates motor and sensory axon regeneration after sciatic nerve crush in the rat. Neuroscience 65:209–216

    PubMed  CAS  Google Scholar 

  14. Rabchevsky AG, Fugaccia I, Turner AF, Blades DA, Mattson MP, Scheff SW (2000) Basic fibroblast growth factor (bFGF) enhances functional recovery following severe spinal cord injury to the rat. Exp Neurol 164:280–291

    PubMed  CAS  Google Scholar 

  15. Teng YD, Mocchetti I, Taveira-DaSilva AM, Gillis RA, Wrathall JR (1999) Basic fibroblast growth factor increases long-term survival of spinal motor neurons and improves respiratory function after experimental spinal cord injury. J Neurosci 19:7037–7047

    PubMed  CAS  Google Scholar 

  16. Mocchetti I, Wrathall JR (1995) Neurotrophic factors in central nervous system trauma. J Neurotrauma 12:853–870

    PubMed  CAS  Google Scholar 

  17. Zhang Z, Coomans C, David G (2001) Membrane heparan sulfate proteoglycan-supported FGF2-FGFR1 signaling: evidence in support of the “cooperative end structures” model. J Biol Chem 276:41921–41929

    PubMed  CAS  Google Scholar 

  18. Oudega M, Hagg T (1996) Nerve growth factor promotes regeneration of sensory axons into adult rat spinal cord. Exp Neurol 140:218–229

    PubMed  CAS  Google Scholar 

  19. Oudega M, Hagg T (1999) Neurotrophins promote regeneration of sensory axons in the adult rat spinal cord. Brain Res 818:431–438

    PubMed  CAS  Google Scholar 

  20. Tobias CA, Shumsky JS, Shibata M, Tuszynski MH, Fischer I, Tessler A, Murray M (2003) Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol 184:97–113

    PubMed  CAS  Google Scholar 

  21. Sharma HS (2006) Post-traumatic application of brain-derived neurotrophic factor and glia-derived neurotrophic factor on the rat spinal cord enhances neuroprotection and improves motor function. Acta Neurochir Suppl 96:329–334

    PubMed  CAS  Google Scholar 

  22. Ramer MS, Priestley JV, Mcmahon SB (2000) Functional regeneration of sensory axons into the adult spinal cord. Nature 403:312–316

    PubMed  CAS  Google Scholar 

  23. Tuszynski MH, Murai K, Blesch A, Grill R, Miller I (1997) Functional characterization of NGF-secreting cell grafts to the acutely injured spinal cord. Cell Transplant 6:361–368

    PubMed  CAS  Google Scholar 

  24. Satake K, Matsuyama Y, Kamiya M, Kawakami H, Iwata H, Adachi K, Kiuchi K (2000) Up-regulation of glial cell line-derived neurotrophic factor (GDNF) following traumatic spinal cord injury. NeuroReport 11:3877–3881

    PubMed  CAS  Google Scholar 

  25. Dolbeare D, Houle JD (2003) Restriction of axonal retraction and promotion of axonal regeneration by chronically injured neurons after intraspinal treatment with glial cell line-derived neurotrophic factor (GDNF). J Neurotrauma 20:1251–1261

    PubMed  Google Scholar 

  26. Iannotti C, Li H, Yan P, Lu X, Wirthlin L, Xu XM (2003) Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Exp Neurol 183:379–393

    PubMed  CAS  Google Scholar 

  27. Nakashima S, Matsuyama Y, Yu Y, Katayama Y, Ito Z, Ishiguro N (2004) Expression of GDNF in spinal cord injury and its repression by ONO-1714. NeuroReport 16:17–20

    Google Scholar 

  28. Hashimoto M, Nitta A, Fukumitsu H, Nomoto H, Shen L, Furukawa S (2005) Inflammation-induced GDNF improves locomotor function after spinal cord injury. NeuroReport 16:99–102

    PubMed  CAS  Google Scholar 

  29. Novikova L, Novikov L, Kellerth JO (1996) Brain-derived neurotrophic factor reduces necrotic zone and supports neuronal survival after spinal cord hemisection in adult rats. Neurosci Lett 220:203–206

    PubMed  CAS  Google Scholar 

  30. Vavrek R, Girgis J, Tetzlaff W, Hiebert GW, Fouad K (2006) BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain 129:1534–1545

    PubMed  CAS  Google Scholar 

  31. Lu P, Jones LL, Tuszynski MH (2005) BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol 191:344–360

    PubMed  CAS  Google Scholar 

  32. Jin Y, Fischer I, Tessler A, Houle JD (2002) Transplant of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol 177:265–275

    PubMed  CAS  Google Scholar 

  33. Hiebert GW, Khodarahmi K, McGraw J, Steeves JD, Tetzlaff W (2002) Brain-derived neurotrophic factor applied to the motor cortex promotes sprouting of corticospinal fibers but not regeneration into a peripheral nerve transplant. J Neurosci Res 69:160–683

    PubMed  CAS  Google Scholar 

  34. Namiki J, Kojima A, Tator CH (2002) Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats. J Neurotrauma 17:1219–1231

    Google Scholar 

  35. Facchiano F, Fernandez E, Mancarella S et al (2002) Promotion of regeneration of corticospinal tract axons in rats with recombinant vascular endothelial growth factor alone and combined with adenovirus coding for this factor. J Neurosurg 97:161–168

    PubMed  CAS  Google Scholar 

  36. Herdegen T, Skene P, Bahr M (1997) The c-Jun transcription factor—bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 20:227–231

    PubMed  CAS  Google Scholar 

  37. Chong MS, Reynolds ML, Irwin N, Coggeshall RE, Emson PC, Benowitz LI, Woolf CJ (1994) GAP-43 expression in primary sensory neurons following central axotomy. J Neurosci 14:4375–4384

    PubMed  CAS  Google Scholar 

  38. Spencer SA, Schuh SM, Liu WS, Willard MB (1992) GAP-43, a protein associated with axon growth, is phosphorylated at three sites in cultured neurons and rat brain. J Biol Chem 267:9059–9064

    PubMed  CAS  Google Scholar 

  39. Ninomiya K, Ishimoto T, Taguchi T (2005) Subcellular localization of PMES-2 proteins regulated by their two cytoskeleton-associated domains. Cell Mol Neurobiol 25:899–911

    PubMed  Google Scholar 

  40. Ye J, Cao L, Cui R, Huang A, Yan Z, Lu C, He C (2004) The effects of ciliary neurotrophic factor on neurological function and glial activity following contusive spinal cord injury in the rats. Brain Res 997:30–39

    PubMed  CAS  Google Scholar 

  41. Ye JH, Houle JD (1997) Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp Neurol 143:70–81

    PubMed  CAS  Google Scholar 

  42. Ozdinler PH, Macklis JD (2006) IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci 9:1371–1381

    PubMed  Google Scholar 

  43. Hung KS, Tsai SH, Lee TC, Lin JW, Chang CK, Chiu WT (2007) Gene transfer of insulin-like growth factor-I providing neuroprotection after spinal cord injury in rats. J Neurosurg Spine 6:35–46

    PubMed  Google Scholar 

  44. Bambakidis NC, Wang RZ, Franic L, Miller RH (2003) Sonic hedgehog-induced neural precursor proliferation after adult rodent spinal cord injury. J Neurosurg 99:70–75

    PubMed  Google Scholar 

  45. Bambakidis NC, Miller RH (2004) Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion. Spine J 4:16–26

    PubMed  Google Scholar 

  46. Bambakidis NC, Theodore N, Nakaji P, Harvey A, Sonntag VK, Preul MC, Miller RH (2005) Endogenous stem cell proliferation after central nervous system injury: alternative therapeutic options. Neurosurg Focus 19:E1

    PubMed  Google Scholar 

  47. Simonen M, Pedersen V, Weinmann O, Schnell L, Buss A, Ledermann B, Christ F, Sansig G, van der Putten H, Schwab ME (2003) Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron 38:201–211

    PubMed  CAS  Google Scholar 

  48. Ahmed Z, Suggate EL, Brown ER, Dent RG, Armstrong SJ, Barrett LB, Berry M, Logan A (2006) Schwann cell-derived factor-induced modulation of the NgR/p75NTR/EGFR axis disinhibits axon growth through CNS myelin in vivo and in vitro. Brain 129:1517–1533

    PubMed  Google Scholar 

  49. Fournier AE, Takizawa BT, Strittmatter SM (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23:1416–1423

    PubMed  CAS  Google Scholar 

  50. Dubreuil CI, Winton MJ, McKerracher L (2003) Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J Cell Biol 162:233–243

    PubMed  CAS  Google Scholar 

  51. von Meyenburg J, Brosamle C, Metz GA, Schwab ME (1998) Regeneration and sprouting of chronically injured corticospinal tract fibers in adult rats promoted by NT-3 and the mAb IN-1, which neutralizes myelin-associated neurite growth inhibitors. Exp Neurol 154:583–594

    Google Scholar 

  52. Bradbury EJ, Moon LD, Popat RJ et al (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640

    PubMed  CAS  Google Scholar 

  53. Faden AI, Holaday JW (1981) A role for endorphins in the pathophysiology of spinal cord injury. Adv Biochem Psychopharmacol 28:435–446

    PubMed  CAS  Google Scholar 

  54. McIntosh TK, Faden AI (1986) Opiate antagonist in traumatic shock. Ann Emerg Med 15:1462–1465

    PubMed  CAS  Google Scholar 

  55. Benzel EC, Khare V, Fowler MR (1992) Effects of Naloxone and Nalmefene in rat spinal cord injury induced by ventral compression technique. J Spinal Disord 5:75–77

    PubMed  CAS  Google Scholar 

  56. Akdemir H, Pasaoglu A, Ozturk F et al (1992) Histopathology of experimental spinal cord trauma. Comparison of treatment with TRH, naloxone, and dexamethasone. Res Exp Med (Berl) 192:177–183

    CAS  Google Scholar 

  57. Arias MJ (1987) Treatment of experimental spinal cord injury with TRH, naloxone, and dexamethasone. Surg Neurol 28:335–338

    PubMed  CAS  Google Scholar 

  58. Faden AI, Jacobs TP, Holaday JW (1981) Opiate antagonist improves neurologic recovery after spinal injury. Science 211:493–494

    PubMed  CAS  Google Scholar 

  59. Faden AI, Jacobs TP, Holaday JW (1981) Thyrotropin-releasing hormone improves neurologic recovery after spinal trauma in cats. New Engl J Med 305:1063–1067

    PubMed  CAS  Google Scholar 

  60. Bracken MB, Shepard MJ, Collins WF et al (1990) A randomized, controlled trial of methyl-prednisolone or naloxone in the treatment of acute spinal cord injury. Reslts of the second NASCIS. New Engl J Med 322:1405–1411

    PubMed  CAS  Google Scholar 

  61. Flamm ES, Young W, Collins WF et al (1985) A phase I trial of naloxone treatment in acute spinal cord injury. J Neurosurg 63:390–397

    PubMed  CAS  Google Scholar 

  62. Guha A, Tator CH, Piper I (1987) Effect of a calcium channel blocker on posttraumatic spinal blood flow. J Neurosurg 66:423–430

    PubMed  CAS  Google Scholar 

  63. Ross IB, Tator CH (1993) Spinal cord blood flow and evoked potential responses after treatment with nimodipine or methylprednisolone in spinal cord-injured rats. Neurosurgery 33:470–476

    PubMed  CAS  Google Scholar 

  64. Imamura H, Tator CH (1998) Effect of intrathecal nimodipine on spinal cord blood flow and evoked potentials in the normal or injured cord. Spinal Cord 36:497–506

    PubMed  CAS  Google Scholar 

  65. Holtz A, Nyström B, Gerdin B (1989) Spinal cord injury in rats: inability of nimodipine or anti-neutrophil serum to improve spinal cord blood flow or neurologic status. Acta Neurol Scand 79:460–467

    PubMed  CAS  Google Scholar 

  66. Ford RW, Malm DN (1985) Failure of nimodipine to reverse acute experimental spinal cord injury. Cent Nerv Syst Trauma 2:9–17

    PubMed  CAS  Google Scholar 

  67. Haghighi SS, Stiens T, Oro JJ, Madsen R (1993) Evaluation of the calcium channel antagonist nimodipine after experimental spinal cord injury. Surg Neurol 39:403–408

    PubMed  CAS  Google Scholar 

  68. Agrawal SK, Nashmi R, Fehlings MG (2000) Role of L- and N-type calcium channels in the pathophysiolongy of traumatic psinal cord white matter injury. Neuroscience 99:179–188

    PubMed  CAS  Google Scholar 

  69. Pointillart V, Gense D, Gross C et al (1993) Effects of nimodipine on posttraumatic spinal cord ischemia in baboons. J Neurotrauma 10:201–213

    PubMed  CAS  Google Scholar 

  70. Ceylan S, Ilbay K, Baykal S, Ceylan S, Senser U, Ozmenoğlu M, Kalelioğlu M, Aktürk F, Komsuoğlu SS, Ozoran A (1992) Treatment of acute spinal cord injuries: comparison of thyrotropin-releasing hormone and nimodipine. Res Exp Med (Berl) 192:23–33

    CAS  Google Scholar 

  71. Kaynar MY, Erdinçler P, Tadayyon E, Belce A, Gümüstas K, Ciplak N (1998) Effect of nimodipine and N-acetylcysteine on lipid peroxidation after experimental spinal cord injury. Neurosurg Rev 21:260–264

    PubMed  CAS  Google Scholar 

  72. Shi RY, Lucas JH, Wolf A, Gross GW (1989) Calcium antagonists fail to protect mammalian spinal neurons after physical injury. J Neurotrauma 6(261–76):277–278

    Google Scholar 

  73. Petitjean ME, Pointillart V, Dixmerias F et al (1998) Medical treatment of spinal cord injury in the acute stage. Ann Fr Anesth Rèanim 17:114–122

    PubMed  CAS  Google Scholar 

  74. Scheller C, Richter HP, Engelhardt M, Köenig R, Antoniadis G (2007) The influence of prophylactic vasoactive treatment on cochlear and facial nerve functions after vestibular schwannoma surgery: a prospective and open-label randomized pilot study. Neurosurgery 61:92–97

    PubMed  Google Scholar 

  75. Wrathall JR, Teng YD, Choiniere D (1996) Amelioration of functional deficits from spinal cord trauma with systemically administered NBQX, an antagonist of non-N-methyl-D-aspartate receptors. Exp Neurol 137:119–126

    PubMed  CAS  Google Scholar 

  76. Kinuta Y, Kimura M, Itokawa Y et al (1989) Changes in Xanthine oxidase in ischemic rat brain. J Neurosurg 71:417–420

    PubMed  CAS  Google Scholar 

  77. Farooque M, Hillered L, Holtz A et al (1996) Changes of extracellular levels of amino acids after graded compression trauma to the spinal cord: an experimental study in the rat using microdialysis. J Neurotrauma 13:537–548

    PubMed  CAS  Google Scholar 

  78. Wrathall JR, Choiniere D, Teng YD (1994) Dose-dependent reduction of tissue loss and functional impairment after spinal cord trauma with the AMPA/kainate antagonist NBQX. J Neurosci 14:6598–6607

    PubMed  CAS  Google Scholar 

  79. Lang-Luzdunski L, Heurteaux C, Vaillant N et al (1999) Riluzole prevents ischemic spinal cord injury casued by aortic crossclamping. J Thorac Cardiovasc Surg 117:881–889

    Google Scholar 

  80. Mitha AP, Maynard KI (2001) Gacyclidine (Beaufour-Ipsen). Curr Opin Investig Drugs 2:814–819

    PubMed  CAS  Google Scholar 

  81. Nesathurai S (1998) Steroids and spinal cord injury: revisiting the NASCIS 2 and NASCIS 3 trials. J Trauma 45:1088–1093

    PubMed  CAS  Google Scholar 

  82. Bracken MB, Shepard MJ, Holford TR et al (1998) Methylprednisolone or trilazad mesylate administration after acute spinal cord injury: 1-year follow-up. Results of the third NSCIS randomized controlled trial. J Neurosurg 8:699–706

    Google Scholar 

  83. Qiao F, Atkinson C, Song H, Pannu R, Singh I, Tomlinson S (2006) Complement plays an important role in spinal cord injury and represents a therapeutic target for improving recovery following trauma. Am J Pathol 169:1039–1047

    PubMed  CAS  Google Scholar 

  84. Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4:814–821

    PubMed  CAS  Google Scholar 

  85. Franzen R, Schoenen J, Leprince P, Joosten E, Moonen G, Martin D (1998) Effects of macrophage transplantation in the injured adult rat spinal cord: a combined immunocytochemical and biochemical study. J Neurosci Res 51:316–327

    PubMed  CAS  Google Scholar 

  86. Bomstein Y, Marder JB, Vitner K, Smirnov I, Lisaey G, Butovsky O, Fulga V, Yoles E (2003) Features of skin-coincubated macrophages that promote recovery from spinal cord injury. J Neuroimmunol 142:10–16

    PubMed  CAS  Google Scholar 

  87. Knoller N, Auerbach G, Fulga V, Zelig G, Attias J, Bakimer R, Marder JB, Yoles E, Belkin M, Schwartz M, Hadani M (2005) Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J Neurosurg Spine 3:173–181

    PubMed  Google Scholar 

  88. Hauben E, Gothilf A, Cohen A, Butovsky O, Nevo U, Smirnov I, Yoles E, Akselrod S, Schwartz M (2003) Vaccination with dendritic cells pulsed with peptides of myelin basic protein promotes functional recovery from spinal cord injury. J Neurosci 23:8808–8819

    PubMed  CAS  Google Scholar 

  89. Mikami Y, Okano H, Sakaguchi M, Nakamura M, Shimazaki T, Okano HJ, Kawakami Y, Toyama Y, Toda M (2004) Implantation of dendritic cells in injured adult spinal cord results in activation of endogenous neural stem/progenitor cells leading to de novo neurogenesis and functional recovery. J Neurosci Res 76:453–465

    PubMed  CAS  Google Scholar 

  90. Geisler FH, Dorsey FC, Coleman WP (1991) Recovery of motor function after spinal cord injury—a randomized, placebo-controlled trial with GM-1 ganglioside. New Engl J Med 324:1829–1838

    PubMed  CAS  Google Scholar 

  91. Geisler FH, Coleman WP, Grieco G (2001) The sygen multicenter acute spinal cord injury study. Spine 26:S87–S98

    PubMed  CAS  Google Scholar 

  92. Pannu R, Barbosa E, Singh AK, Singh I (2005) Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats. J Neurosci Res 79:340–350

    PubMed  CAS  Google Scholar 

  93. Holmberg E, Nordstrom T, Gross M, Kluge B, Zhang SX, Doolen S (2006) Simvastatin promotes neurite outgrowth in the presence of inhibitory molecules found in central nervous system injury. J Neurotrauma 23:1366–1378

    PubMed  Google Scholar 

  94. Pannu R, Christie DK, Barbosa E, Singh I, Singh AK (2007) Post-trauma Lipitor treatment prevents endothelial dysfunction, facilitates neuroprotection, and promotes locomotor recovery following spinal cord injury. J Neurochem 101:182–200

    PubMed  CAS  Google Scholar 

  95. Scott GS, Cuzzocrea S, Genovese T, Koprowski H, Hooper DC (2005) Uric acid protects against secondary damage after spinal cord injury. Proc Natl Acad Sci USA 102:3483–3488

    PubMed  CAS  Google Scholar 

  96. Su H (2007) Lithium enhances proliferation and neuronal differentiation of neural progenitor cells in vitro and after transplantation into the adult rat spinal cord. Exp Neurol 206:296–307

    PubMed  CAS  Google Scholar 

  97. Galandiuk S, Raque G, Appel S, Polk HC (1993) The two-edged sword of large-dose steroids for spinal cord trauma. Ann Surg 218:419–425

    PubMed  CAS  Google Scholar 

  98. Raineteau O, Fouad K, Noth P, Thallmair M, Schwab ME (2001) Functional switch between motor tracts in the presence of the mAb IN-1 in the adult rat. Proc Natl Acad Sci USA 98:6929–6934

    PubMed  CAS  Google Scholar 

  99. Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, Pepinsky RB (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7:221–228

    PubMed  CAS  Google Scholar 

  100. Laurén J (2007) Characterization of LRRTM and NGR gene families: expression and functions. Dissertation, University of Helsinki

  101. Park JB, Yiu G, Kaneko S, Wang J, Chang J, He XL, Garcia KC, He Z (2005) A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 45:345–351

    PubMed  CAS  Google Scholar 

  102. Shao Z, Browning JL, Lee X, Scott ML, Shulga-Morskaya S, Allaire N, Thill G (2005) TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron 45:353–359

    PubMed  CAS  Google Scholar 

  103. Ahmed Z, Mazibrada G, Seabright RJ, Dent RG, Berry M, Logan A (2006) TACE-induced cleavage of NgR and p75NTR in dorsal root ganglion cultures disinhibits outgrowth and promotes branching of neurites in the presence of inhibitory CNS myelin. FASEB J 20:1939–1941

    PubMed  CAS  Google Scholar 

  104. Li S, Liu BP, Budel S, Li M, Ji B, Walus L, Li W, Jirik A, Rabacchi S, Choi E, Worley D, Sah DW, Pepinsky B, Lee D, Relton J, Strittmatter SM (2004) Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci 24:10511–10520

    PubMed  CAS  Google Scholar 

  105. Shelke SV, Gao GP, Mesch S, Gathje H, Kelm S, Schwardt O, Ernst B (2007) Synthesis of sialic acid derivatives as ligands for the myelin-associated glycoprotein (MAG). Bioorg Med Chem 15:4951–4965

    PubMed  CAS  Google Scholar 

  106. Laketa V, Simpson JC, Bechtel S, Wiemann S, Pepperkok R (2006) High-content microscopy identifies new neurite outgrowth regulators. Mol Biol 18:242–252

    Google Scholar 

  107. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    PubMed  CAS  Google Scholar 

  108. Chen ZY, Sun C, Reuhl K, Bergemann A, Henkemeyer M, Zhou R (2004) Abnormal hippocampal axon bundling in EphB receptor mutant mice. J Neurosci 24:2366–2374

    PubMed  CAS  Google Scholar 

  109. Kadison SR, Makinen T, Klein R, Henkemeyer M, Kaprielian Z (2006) EphB receptors and ephrin-B3 regulate axon guidance at the ventral midline of the embryonic mouse spinal cord. J Neurosci 26:8909–8914

    PubMed  CAS  Google Scholar 

  110. Benson MD, Romero MI, Lush ME, Lu QR, Henkemeyer M, Prada LF (2005) Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc Natl Acad Sci USA 102:10694–10699

    PubMed  CAS  Google Scholar 

  111. Chrencik JE, Brooun A, Recht MI, Kraus ML, Koolpe M, Kolatkar AR, Bruce RH, Martiny-Baron G, Widmer H, Pasquale EB, Kuhn P (2006) Structure and thermodynamic characterization of the EphB4/Ephrin-B2 antagonist peptide complex reveals the determinants for receptor specificity. Structure 14:321–330

    PubMed  CAS  Google Scholar 

  112. Guthrie S (2004) Axon guidance: mice and men need Rig and Robo. Curr Biol 14:R632–R634

    PubMed  CAS  Google Scholar 

  113. Blein S, Ginham R, Uhrin D, Smith BO, Soares DC, Veltel S, McIlhinney RA, White JH, Barlow PN (2004) Structural analysis of the complement control protein (CCP) modules of GABA(B) receptor 1a: only one of the two CCP modules is compactly folded. J Biol Chem 279:48292–48306

    PubMed  CAS  Google Scholar 

  114. Marillat V, Sabatier C, Failli V, Matsunaga E, Sotelo C, Tessier-Lavigne M, Chedotal A (2004) The slit receptor Rig-1/Robo3 controls midline crossing by hindbrain precerebellar neurons and axons. Neuron 43:69–79

    PubMed  CAS  Google Scholar 

  115. Chalasani SH, Sabol A, Xu H, Gyda MA, Rasband K, Granato M, Chien CB, Raper JA (2007) Stromal cell-derived factor-1 antagonizes slit/robo signaling in vivo. J Neurosci 27:973–980

    PubMed  CAS  Google Scholar 

  116. Bellamy TC, Garthwaite J (2001) Sub-second kinetics of the nitric oxide receptor, soluble guanylyl cyclase, in intact cerebellar cells. J Biol Chem 276:4287–4292

    PubMed  CAS  Google Scholar 

  117. Takagi H, Asano Y, Yamakawa N, Matsumoto I, Kimata K (2002) Annexin 6 is a putative cell surface receptor for chondroitin sulfate chains. J Cell Sci 115:3309–3318

    PubMed  CAS  Google Scholar 

  118. Rolls A, Avidan H, Cahalon L, Schori H, Bakalash S, Litvak V, Lev S, Lider O, Schwartz M (2004) A disaccharide derived from chondroitin sulphate proteoglycan promotes central nervous system repair in rats and mice. Eur J Neurosci 20(8):1973–1983

    PubMed  Google Scholar 

  119. Geisler FH, Dorsey FC, Coleman WP (1991) Recovery of motor function after spinal-cord injury—a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 324:1829–1838

    PubMed  CAS  Google Scholar 

  120. Flamm ES, Young W, Collins WF, Piepmeier J, Clifton GL, Fischer B (1985) A phase I trial of naloxone treatment in acute spinal cord injury. J Neurosurg 63:390–397

    PubMed  CAS  Google Scholar 

  121. Bracken MB (1990) Methylprednisolone in the management of acute spinal cord injuries. Med J Aust 153:368

    PubMed  CAS  Google Scholar 

  122. Bracken MB, Shepard MJ, Collins WF Jr, Holford TR, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon JC, Marshall LF et al (1992) Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second National Acute Spinal Cord Injury Study. J Neurosurg 76:23–31

    PubMed  CAS  Google Scholar 

  123. Pitts LH, Ross A, Chase GA, Faden AI (1995) Treatment with thyrotropin-releasing hormone (TRH) in patients with traumatic spinal cord injuries. J Neurotrauma 12:235–243

    PubMed  CAS  Google Scholar 

  124. Tadié M, d’Arbigny P, Mathé JF et al (1999) Acute spinal cord injury: early care and treatment in a multicenter study with gacyclidine. Soc Neurosci Abstr 25:1090

    Google Scholar 

  125. Pointillart V, Petitjean ME, Wiart L, Vital JM, Lassié P, Thicoipé M, Dabadie P (2000) Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord 38:71–76

    PubMed  CAS  Google Scholar 

  126. Bracken MB, Collins WF, Freeman DF, Shepard MJ, Wagner FW, Silten RM, Hellenbrand KG, Ransohoff J, Hunt WE, Perot PL Jr et al (1984) Efficacy of methylprednisolone in acute spinal cord injury. JAMA 251:45–52

    PubMed  CAS  Google Scholar 

  127. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings M, Herr DL, Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL Jr, Piepmeier J, Sonntag VK, Wagner F, Wilberger JE, Winn HR, Young W (1997) Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277:1597–1604

    PubMed  CAS  Google Scholar 

  128. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings MG, Herr DL, Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL Jr, Piepmeier J, Sonntag VK, Wagner F, Wilberger JE, Winn HR, Young W (1998) Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third National Acute Spinal Cord Injury randomized controlled trial. J Neurosurg 89:699–706

    PubMed  CAS  Google Scholar 

  129. Otani K, Abe H, Kadoya S et al (1994) Beneficial effect of methylprednisolone sodium succinate in the treatment of acute spinal cord injury. Sekitsui Sekizui Janaru 7:633–647

    Google Scholar 

  130. George ER, Scholten DJ, Buechler CM, Jordan-Tibbs J, Mattice C, Albrecht RM (1995) Failure of methylprednisolone to improve the outcome of spinal cord injuries. Am Surg 61:659–663, discussion 663–4

    PubMed  CAS  Google Scholar 

  131. Gerhart DZ, Leino RL, Borson ND, Taylor WE, Gronlund KM, McCall AL, Drewes LR (1995) Localization of glucose transporter GLUT 3 in brain: comparison of rodent and dog using species-specific carboxyl-terminal antisera. Neuroscience 66:237–246

    PubMed  CAS  Google Scholar 

  132. Kiwerski JE (1993) Application of dexamethasone in the treatment of acute spinal cord injury. Injury 24:457–460

    PubMed  CAS  Google Scholar 

  133. Poynton AR, O’Farrell DA, Shannon F, Murray P, McManus F, Walsh MG (1997) An evaluation of the factors affecting neurological recovery following spinal cord injury. Injury 28:545–548

    PubMed  CAS  Google Scholar 

  134. Prendergast MR, Saxe JM, Ledgerwood AM, Lucas CE, Lucas WF (1994) Massive steroids do not reduce the zone of injury after penetrating spinal cord injury. J Trauma 37:576–579, discussion 579–580

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shane Tubbs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortazavi, M.M., Verma, K., Deep, A. et al. Chemical priming for spinal cord injury: a review of the literature part II—potential therapeutics. Childs Nerv Syst 27, 1307–1316 (2011). https://doi.org/10.1007/s00381-010-1365-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-010-1365-x

Keywords

Navigation