Skip to main content
Log in

A novel method to estimate blood flow velocity in the left atrial appendage using enhanced computed tomography: role of Hounsfield unit density ratio at two distinct points within the left atrial appendage

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Low blood flow velocity in the left atrial appendage (LAA) indicates a high risk of thromboembolism. Although transesophageal echocardiography (TEE) has been the standard method with which to evaluate the LAA blood flow velocity, a clinically noninvasive method is desired. We hypothesized that the ratio of the Hounsfield unit (HU) density at two distinct points within the LAA represents the blood flow velocity in the LAA. We retrospectively investigated 60 consecutive patients with atrial fibrillation (paroxysmal type, n = 29) who underwent enhanced computed tomography (CT) and TEE. The peak emptying flow velocity in the LAA (LAAPV) was evaluated using TEE. HU density was measured at proximal and distal sites of the LAA (LAAp and LAAd) on CT images. The LAAd/LAAp ratio was correlated with the LAAPV (P < 0.01, r = 0.69). Among several indices, the HU ratio was the most significant parameter associated with the LAAPV (β = 0.469, CI 28.602–68.286, P < 0.001). Receiver-operating characteristic analysis (area under the curve, 0.91) demonstrated that an HU density ratio cutoff of 0.32 discriminated a low LAAPV (<25 cm/s) with sensitivity of 90% and specificity of 84%. Flow velocity of the LAA can be estimated by the HU density ratio at distal and proximal sites within the LAA. Our method might be a feasible substitution for TEE to discriminate patients with a reduced LAAPV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim YY, Klein AL, Halliburton SS, Popovic ZB, Kuzmiak SA, Sola S, Garcia MJ, Schenhagen P, Natale A (2007) Left atrial appendage filling defects identified by multidetector computed tomography in patients undergoing radiofrequency pulmonary vein antral isolation: a comparison with transesophageal echocardiography. Am Heart J 154:1199–1205

    Article  PubMed  Google Scholar 

  2. Sawit ST, Garcia-Alvarez A, Suri B, Gaztanaga J, Fernandez-Friera L, Mirelis JG, D’Anca M, Fuster V, Sanz J, Garcia MJ (2012) Usefulness of cardiac computed tomographic delayed contrast enhancement of the left atrial appendage before pulmonary vein ablation. Am J Cardiol 109:677–684. doi:10.1016/j.amjcard.2011.10.028

    Article  PubMed  Google Scholar 

  3. Martinez MW, Kirsch J, Williamson EE, Syed IS, Feng D, Ommen S, Packer DL, Brady PA (2009) Utility of nongated multidetector computed tomography for detection of left atrial thrombus in patients undergoing catheter ablation of atrial fibrillation. JACC Cardiovasc Imaging 2:69–76. doi:10.1016/j.jcmg.2008.09.011

    Article  PubMed  Google Scholar 

  4. Hioki M, Matsuo S, Tokutake K, Yokoyama K, Narui R, Ito K, Tanigawa S, Tokuda M, Yamashita S, Anan I, Inada K, Sakuma T, Sugimoto K, Yoshimura M, Yamane T (2016) Filling defects of the left atrial appendage on multidetector computed tomography: their disappearance following catheter ablation of atrial fibrillation and the detection of LAA thrombi by MDCT. Heart Vessels. doi:10.1007/s00380-016-0819-9

    Google Scholar 

  5. Hur J, Kim YJ, Lee HJ, Nam JE, Ha JW, Heo JH, Chang HJ, Kim HS, Hong YJ, Kim HY, Choe KO, Choi BW (2011) Dual-enhanced cardiac CT for detection of left atrial appendage thrombus in patients with stroke: a prospective comparison study with transesophageal echocardiography. Stroke 42:2471–2477. doi:10.1161/STROKEAHA.110.611293

    Article  PubMed  Google Scholar 

  6. Saremi F, Channual S, Gurudevan SV, Narula J, Abolhoda A (2008) Prevalence of left atrial appendage pseudothrombus filling defects in patients with atrial fibrillation undergoing coronary computed tomography angiography. J Cardiovasc Comput Tomogr 2:164–171. doi:10.1016/j.jcct.2008.02.012

    Article  PubMed  Google Scholar 

  7. January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, Conti JB, Ellinor PT, Ezekowitz MD, Field ME, Murray KT, Sacco RL, Stevenson WG, Tchou PJ, Tracy CM, Yancy CW (2014) 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation 130:2071–2104. doi:10.1161/CIR.0000000000000040

    Article  PubMed  Google Scholar 

  8. Black IW, Hopkins AP, Lee LC, Walsh WF (1991) Left atrial spontaneous echo contrast: a clinical and echocardiographic analysis. J Am Coll Cardiol 18:398–404

    Article  CAS  PubMed  Google Scholar 

  9. The Stroke Prevention in Atrial Fibrillation Investigators Committee on Echocardiography (1998) Transesophageal echocardiographic correlates of thromboembolism in high-risk patients with nonvalvular atrial fibrillation. The Stroke Prevention in Atrial Fibrillation Investigators Committee on Echocardiography. Ann Intern Med 128:639–647

    Article  Google Scholar 

  10. Mügge A, Kühn H, Nikutta P, Grote J, Lopez JA, Daniel WG (1994) Assessment of left atrial appendage function by biplane transesophageal echocardiography in patients with nonrheumatic atrial fibrillation: identification of a subgroup of patients at increased embolic risk. J Am Coll Cardiol 23:599–607

    Article  PubMed  Google Scholar 

  11. Kamp O, Verhorst PM, Welling RC, Visser CA (1999) Importance of left atrial appendage flow as a predictor of thromboembolic events in patients with atrial fibrillation. Eur Heart J 20:979–985

    Article  CAS  PubMed  Google Scholar 

  12. González-Torrecilla E, García-Fernández MA, Pérez-David E, Bermejo J, Moreno M, Delcán JL (2000) Predictors of left atrial spontaneous echo contrast and thrombi in patients with mitral stenosis and atrial fibrillation. Am J Cardiol 86:529–534

    Article  PubMed  Google Scholar 

  13. Manning WJ, Silverman DI, Gordon SP, Krumholz HM, Douglas PS (1993) Cardioversion from atrial fibrillation without prolonged anticoagulation with use of transesophageal echocardiography to exclude the presence of atrial thrombi. N Engl J Med 328:750–755. doi:10.1056/NEJM199303183281102

    Article  CAS  PubMed  Google Scholar 

  14. Puwanant S, Varr BC, Shrestha K, Hussain SK, Tang WH, Gabriel RS, Wazni OM, Bhargava M, Saliba WI, Thomas JD, Lindsay BD, Klein AL (2009) Role of the CHADS2 score in the evaluation of thromboembolic risk in patients with atrial fibrillation undergoing transesophageal echocardiography before pulmonary vein isolation. J Am Coll Cardiol 54:2032–2039. doi:10.1016/j.jacc.2009.07.037

    Article  PubMed  Google Scholar 

  15. Min JK, Spencer KT, Furlong KT, DeCara JM, Sugeng L, Ward RP, Lang RM (2005) Clinical features of complications from transesophageal echocardiography: a single-center case series of 10,000 consecutive examinations. J Am Soc Echocardiogr 18:925–929

    Article  PubMed  Google Scholar 

  16. Shanewise JS, Cheung AT, Aronson S, Stewart WJ, Weiss RL, Mark JB, Savage RM, Sears-Rogan P, Mathew JP, Quiñones MA, Cahalan MK, Savino JS (1999) ASE/SCA guidelines for performing a comprehensive intraoperative multiplane transesophageal echocardiography examination: recommendations of the American Society of Echocardiography Council for Intraoperative Echocardiography and the Society of Cardiovascular Anesthesiologists Task Force for Certification in Perioperative Transesophageal Echocardiography. Anesth Analg 89:870–884

    Article  CAS  PubMed  Google Scholar 

  17. Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ (2001) Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA 285:2864–2870

    Article  CAS  PubMed  Google Scholar 

  18. Shibazaki K, Kimura K, Aoki J, Sakai K, Saji N, Uemura J (2014) Brain natriuretic peptide level on admission predicts recurrent stroke after discharge in stroke survivors with atrial fibrillation. Clin Neurol Neurosurg 127:25–29

    Article  PubMed  Google Scholar 

  19. Antonielli E, Pizzuti A, Pálinkás A, Tanga M, Gruber N, Michelassi C, Varga A, Bonzano A, Gandolfo N, Halmai L, Bassignana A, Imran MB, Delnevo F, Csanády M, Picano E (2002) Clinical value of left atrial appendage flow for prediction of long-term sinus rhythm maintenance in patients with nonvalvular atrial fibrillation. J Am Coll Cardiol 39:1443–1449

    Article  PubMed  Google Scholar 

  20. Santiago D, Warshofsky M, Li Mandri G, Di Tullio M, Coromilas J, Reiffel J, Homma S (1994) Left atrial appendage function and thrombus formation in atrial fibrillation-flutter: a transesophageal echocardiographic study. J Am Coll Cardiol 24:159–164

    Article  CAS  PubMed  Google Scholar 

  21. Agmon Y, Khandheria BK, Gentile F, Seward JB (1999) Echocardiographic assessment of the left atrial appendage. J Am Coll Cardiol 34:1867–1877

    Article  CAS  PubMed  Google Scholar 

  22. Yamaguchi T, Takahashi D (2009) Development of test bolus tracking method and usefulness in coronary CT angiography [Article in Japanese]. Nihon Hoshasen Gijutsu Gakkai Zasshi 65:1032–1040

    Article  PubMed  Google Scholar 

  23. Handke M, Harloff A, Hetzel A, Olschewski M, Bode C, Geibel A (2005) Left atrial appendage flow velocity as a quantitative surrogate parameter for thromboembolic risk: determinants and relationship to spontaneous echocontrast and thrombus formation–a transesophageal echocardiographic study in 500 patients with cerebral ischemia. J Am Soc Echocardiogr 18:1366–1372

    Article  PubMed  Google Scholar 

  24. Shimizu H, Murakami Y, Inoue S, Ohta Y, Nakamura K, Katoh H, Sakne T, Takahashi N, Ohata S, Sugamori T, Ishibashi Y, Shimada T (2002) High plasma brain natriuretic polypeptide level as a marker of risk for thromboembolism in patients with nonvalvular atrial fibrillation. Stroke 33:1005–1010

    Article  CAS  PubMed  Google Scholar 

  25. Ozer N, Kiliç H, Arslan U, Atalar E, Aksöyek S, Ovünç K, Ay H, Oztürk E, Karaagaoglu E, Tokgozoglu L, Kes SS (2005) Echocardiographic predictors of left atrial appendage spontaneous echocontrast in patients with stroke and atrial fibrillation. J Am Soc Echocardiogr 18:1362–1365

    Article  PubMed  Google Scholar 

  26. Obel OA, Luddington L, Maarouf N, Aytemir K, Ekwall C, Malik M, Camm AJ (2005) Effects of ventricular rate and regularity on the velocity and magnitude of left atrial appendage flow in atrial fibrillation. Heart 91:764–768. doi:10.1136/hrt.2003.030940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goldberg YH, Gordon SC, Spevack DM, Gordon GM (2010) Disparities in emptying velocity within the left atrial appendage. Eur J Echocardiogr 11:290–295. doi:10.1093/ejechocard/jep216

    Article  PubMed  Google Scholar 

  28. Li YH, Lai LP, Shyu KG, Hwang JJ, Kuan P, Lien WP (1994) Clinical implications of left atrial appendage flow patterns in nonrheumatic atrial fibrillation. Chest 105:748–752

    Article  CAS  PubMed  Google Scholar 

  29. Fatkin D, Kelly RP, Feneley MP (1994) Relations between left atrial appendage blood flow velocity, spontaneous echocardiographic contrast and thromboembolic risk in vivo. J Am Coll Cardiol 23:961–969

    Article  CAS  PubMed  Google Scholar 

  30. Fuster V, Rydén LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, Halperin JL, Le Heuzey JY, Kay GN, Lowe JE, Olsson SB, Prystowsky EN, Tamargo JL, Wann S (2006) ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation-executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation). J Am Coll Cardiol 48:854–906

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kurita.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

380_2016_931_MOESM1_ESM.docx

Supplementary material 1 Supplemental figure. Determination of LAAd and LAAp in the particular case. LAAd and LAAp must be measured on separate horizontal sections in LAA with longer main trunk and mild bending lobe. Right and left panels show horizontal sections of CT image that is selected as the maximum depiction of the LAAp and LAAd, respectively. In right and left panels, a small wipe window shows three-dimensional right anterior oblique view, and a blue line represents a parallel line of these selected horizontal sections. A black circle is described as sampling point of LAAp in left panel. A red line is described as a straight line connecting a summit of LAA area and a flexion point of the LAA posterior wall, and black circle is described as sampling point of LAAd in right panel. (DOCX 514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasuoka, R., Kurita, T., Kotake, Y. et al. A novel method to estimate blood flow velocity in the left atrial appendage using enhanced computed tomography: role of Hounsfield unit density ratio at two distinct points within the left atrial appendage. Heart Vessels 32, 893–901 (2017). https://doi.org/10.1007/s00380-016-0931-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-016-0931-x

Keywords

Navigation