Skip to main content
Log in

Relationships of left ventricular strain and strain rate to wall stress and their afterload dependency

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Whether and how left ventricular (LV) strain and strain rate correlate with wall stress is not known. Furthermore, it is not determined whether strain or strain rate is less dependent on the afterload. In 41 healthy young adults, LV global peak strain and systolic peak strain rate in the longitudinal direction (LS and LSR, respectively) and circumferential direction (CS and CSR, respectively) were measured layer-specifically using speckle tracking echocardiography (STE) before and during a handgrip exercise. Among all the points before and during the exercise, all the STE parameters significantly correlated linearly with wall stress (LS: r = −0.53, p < 0.01, LSR: r = −0.28, p < 0.05, CS in the inner layer: r = −0.72, p < 0.01, CSR in the inner layer: r = −0.47, p < 0.01). Strain more strongly correlated with wall stress than strain rate (r = −0.53 for LS vs. r = −0.28 for LSR, p < 0.05; r = −0.72 for CS vs. r = −0.47 for CSR in the inner layer, p < 0.05), whereas the interobserver variability was similar between strain and strain rate (longitudinal 6.2 vs. 5.2 %, inner circumferential 4.8 vs. 4.7 %, mid-circumferential 7.9 vs. 6.9 %, outer circumferential 10.4 vs. 9.7 %), indicating that the differences in correlation coefficients reflect those in afterload dependency. It was thus concluded that LV strain and strain rate linearly and inversely correlated with wall stress in the longitudinal and circumferential directions, and strain more strongly depended on afterload than did strain rate. Myocardial shortening should be evaluated based on the relationships between these parameters and wall stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ishizu T, Seo Y, Enomoto Y, Sugimori H, Yamamoto M, Machino T, Kawamura R, Aonuma K (2010) Experimental validation of left ventricular transmural strain gradient with echocardiographic two-dimensional speckle tracking imaging. Eur J Echocardiogr 11:377–385

    Article  PubMed  Google Scholar 

  2. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP, Sicari R, Smiseth OA, Smulevitz B, Takeuchi M, Thomas JD, Vannan M, Voigt JU, Zamorano JL (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 24:277–313

    Article  PubMed  Google Scholar 

  3. Maruo T, Seo Y, Yamada S, Arita T, Ishizu T, Shiga T, Dohi K, Toide H, Furugen A, Inoue K, Daimon M, Kawai H, Tsuruta H, Nishigami K, Yuda S, Ozawa T, Izumi C, Fumikura Y, Wada Y, Doi M, Okada M, Takenaka K, Aonuma K (2015) The Speckle Tracking Imaging for the Assessment of Cardiac Resynchronization Therapy (START) study. Circ J 79:613–622

    Article  PubMed  Google Scholar 

  4. Kim SA, Kim MN, Shim WJ, Park SM (2016) Layer-specific dyssynchrony and its relationship to the change of left ventricular function in hypertensive patients. Heart Vessels 31:528–534

    Article  PubMed  Google Scholar 

  5. Okada K, Yamada S, Iwano H, Nishino H, Nakabachi M, Yokoyama S, Abe A, Ichikawa A, Kaga S, Nishida M, Hayashi T, Murai D, Mikami T, Tsutsui H (2015) Myocardial shortening in 3 orthogonal directions and its transmural variation in patients with nonobstructive hypertrophic cardiomyopathy. Circ J 79:2471–2479

    Article  PubMed  Google Scholar 

  6. Saito M, Okayama H, Yoshii T, Higashi H, Morioka H, Hiasa G, Sumimoto T, Inaba S, Nishimura K, Inoue K, Ogimoto A, Shigematsu Y, Hamada M, Higaki J (2012) Clinical significance of global two-dimensional strain as a surrogate parameter of myocardial fibrosis and cardiac events in patients with hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 13:617–623

    Article  PubMed  Google Scholar 

  7. Hoogslag GE, Thijssen J, Hoke U, Boden H, Antoni ML, Debonnaire P, Haeck ML, Holman ER, Bax JJ, Ajmone Marsan N, Schalij MJ, Delgado V (2014) Prognostic implications of left ventricular regional function heterogeneity assessed with two-dimensional speckle tracking in patients with ST-segment elevation myocardial infarction and depressed left ventricular ejection fraction. Heart Vessels 29:619–628

    Article  PubMed  Google Scholar 

  8. Nahum J, Bensaid A, Dussault C, Macron L, Clemence D, Bouhemad B, Monin JL, Rande JL, Gueret P, Lim P (2010) Impact of longitudinal myocardial deformation on the prognosis of chronic heart failure patients. Circ Cardiovasc Imaging 3:249–256

    Article  PubMed  Google Scholar 

  9. Burns AT, La Gerche A, D’Hooge J, MacIsaac AI, Prior DL (2010) Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur J Echocardiogr 11:283–289

    Article  PubMed  Google Scholar 

  10. Rosner A, Bijnens B, Hansen M, How OJ, Aarsaether E, Muller S, Sutherland GR, Myrmel T (2009) Left ventricular size determines tissue Doppler-derived longitudinal strain and strain rate. Eur J Echocardiogr 10:271–277

    Article  PubMed  Google Scholar 

  11. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1–39):e14

    Google Scholar 

  12. Reichek N, Wilson J, St John Sutton M, Plappert TA, Goldberg S, Hirshfeld JW (1982) Noninvasive determination of left ventricular end-systolic stress: validation of the method and initial application. Circulation 65:99–108

    Article  CAS  PubMed  Google Scholar 

  13. Capasso JM, Palackal T, Olivetti G, Anversa P (1990) Left ventricular failure induced by long-term hypertension in rats. Circ Res 66:1400–1412

    Article  CAS  PubMed  Google Scholar 

  14. Cohen J, Cohen P (1983) Applied multiple regression/correlation analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, New York, pp 56–57

    Google Scholar 

  15. Aurigemma GP, Silver KH, Priest MA, Gaasch WH (1995) Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy. J Am Coll Cardiol 26:195–202

    Article  CAS  PubMed  Google Scholar 

  16. Shimizu G, Hirota Y, Kita Y, Kawamura K, Saito T, Gaasch WH (1991) Left ventricular midwall mechanics in systemic arterial hypertension. Myocardial function is depressed in pressure-overload hypertrophy. Circulation 83:1676–1684

    Article  CAS  PubMed  Google Scholar 

  17. Donal E, Bergerot C, Thibault H, Ernande L, Loufoua J, Augeul L, Ovize M, Derumeaux G (2009) Influence of afterload on left ventricular radial and longitudinal systolic functions: a two-dimensional strain imaging study. Eur J Echocardiogr 10:914–921

    Article  PubMed  Google Scholar 

  18. Hurlburt HM, Aurigemma GP, Hill JC, Narayanan A, Gaasch WH, Vinch CS, Meyer TE, Tighe DA (2007) Direct ultrasound measurement of longitudinal, circumferential, and radial strain using 2-dimensional strain imaging in normal adults. Echocardiography 24:723–731

    Article  PubMed  Google Scholar 

  19. Narayanan A, Aurigemma GP, Chinali M, Hill JC, Meyer TE, Tighe DA (2009) Cardiac mechanics in mild hypertensive heart disease: a speckle-strain imaging study. Circ Cardiovasc Imaging 2:382–390

    Article  PubMed  Google Scholar 

  20. Marwick TH (2006) Measurement of strain and strain rate by echocardiography: ready for prime time? J Am Coll Cardiol 47:1313–1327

    Article  PubMed  Google Scholar 

  21. Penicka M, Bartunek J, Trakalova H, Hrabakova H, Maruskova M, Karasek J, Kocka V (2010) Heart failure with preserved ejection fraction in outpatients with unexplained dyspnea: a pressure-volume loop analysis. J Am Coll Cardiol 55:1701–1710

    Article  PubMed  Google Scholar 

  22. Serri K, Reant P, Lafitte M, Berhouet M, Le Bouffos V, Roudaut R, Lafitte S (2006) Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol 47:1175–1181

    Article  PubMed  Google Scholar 

  23. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259

    Article  CAS  PubMed  Google Scholar 

  24. Boettler P, Hartmann M, Watzl K, Maroula E, Schulte-Moenting J, Knirsch W, Dittrich S, Kececioglu D (2005) Heart rate effects on strain and strain rate in healthy children. J Am Soc Echocardiogr 18:1121–1130

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Yamada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murai, D., Yamada, S., Hayashi, T. et al. Relationships of left ventricular strain and strain rate to wall stress and their afterload dependency. Heart Vessels 32, 574–583 (2017). https://doi.org/10.1007/s00380-016-0900-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-016-0900-4

Keywords

Navigation