Skip to main content

Advertisement

Log in

Brain natriuretic peptide as a potential novel marker of salt-sensitivity in chronic kidney disease patients without cardiac dysfunction

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Although the renin–angiotensin system (RAS) is counter-balanced by a salt-sensitive mechanism in the hypertensive state, both are reported to be up-regulated in chronic kidney disease (CKD) patients. We conducted this study to evaluate the associations among the RAS, renal function, hypertension, and atherosclerosis, as well as to identify markers for salt-sensitivity. A total of 213 pre-dialysis CKD patients with preserved cardiac function (EF >50 %) were enrolled. Their renal and cardiac biochemical markers and plasma renin activity (PRA) were measured, and echocardiography and carotid artery ultrasound were performed. Their salt intake was estimated by the NaCl excretion from a 24-h collected urine sample. The PRA was higher in patients with hypertension (p = 0.018), and had a significant negative correlation with the eGFR (r = −0.23, p = 0.0067). Importantly, the PRA had a strong negative correlation with the brain natriuretic peptide (BNP) level (r = −0.28, p = 0.017) regardless of whether the patients were being treated with RAS inhibitors. The BNP level was related to the renal functions (eGFR: p = 0.001, ACR: p = 0.009). There was a significant positive correlation between the BNP level and carotid intima–media thickness (p < 0.001). A multivariate analysis revealed that older age and an excess of NaCl excretion were independent predictors of BNP elevation (p = 0.02 and 0.003, respectively). Our analysis revealed details of the counterbalance between BNP and PRA, as well as identifying that excess salt intake is a predictor of BNP elevation. These results indicate that the BNP could be a possible valuable marker for salt sensitivity, and that high salt sensitivity could facilitate atherosclerosis in CKD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CKD:

Chronic kidney disease

eGFR:

Estimated glomerular filtration rate

PRA:

Plasma renin activity

BNP:

Brain natriuretic peptide

RAS:

Renin–angiotensin system

ACE-Is:

Angiotensin converting enzyme inhibitors

ARBs:

Angiotensin receptor blockers

EF:

Ejection fraction

LVMI:

Left ventricular mass index

ACR:

Albumin creatinine ratio

References

  1. Recio-Mayoral A, Banerjee D, Streather C, Kaski JC (2011) Endothelial dysfunction, inflammation and atherosclerosis in chronic kidney disease—a cross-sectional study of predialysis, dialysis and kidney-transplantation patients. Atherosclerosis 216:446–451

    Article  CAS  PubMed  Google Scholar 

  2. Zyga S, Christopoulou G, Malliarou M (2011) Malnutrition–inflammation–atherosclerosis syndrome in patients with end-stage renal disease. J Ren Care 37:12–15

    Article  PubMed  Google Scholar 

  3. Fujii H, Nakai K, Fukagawa M (2011) Role of oxidative stress and indoxyl sulfate in progression of cardiovascular disease in chronic kidney disease. Ther Apher Dial 15:125–128

    Article  CAS  PubMed  Google Scholar 

  4. Ninomiya T, Kiyohara Y, Kubo M, Tanizaki Y, Doi Y, Okubo K, Wakugawa Y, Hata J, Oishi Y, Shikata K, Yonemoto K, Hirakata H, Iida M (2005) Chronic kidney disease and cardiovascular disease in a general japanese population: The Hisayama Study. Kidney Int 68:228–236

    Article  PubMed  Google Scholar 

  5. Uhlig K, Levey AS, Sarnak MJ (2003) Traditional cardiac risk factors in individuals with chronic kidney disease. Semin Dial 16:118–127

    Article  PubMed  Google Scholar 

  6. Izumi Y, Hayashi M, Morimoto R, Cheng XW, Wu H, Ishii H, Yasuda Y, Yoshikawa D, Izawa H, Matsuo S, Oiso Y, Murohara T (2016) Impact of circulating cathepsin k on the coronary calcification and the clinical outcome in chronic kidney disease patients. Heart Vessels 31:6–14

    Article  PubMed  Google Scholar 

  7. Sugiura T, Yoshikawa D, Ishii H, Suzuki S, Kumagai S, Inoue Y, Okumura S, Isobe S, Hayashi M, Ando H, Amano T, Murohara T (2014) Relation of omega-3 fatty acid and c-reactive protein to peripheral artery disease in patients with coronary artery disease. Heart Vessels 29:449–455

    Article  PubMed  Google Scholar 

  8. Okumura S, Sakakibara M, Hayashida R, Jinno Y, Tanaka A, Okada K, Hayashi M, Ishii H, Murohara T (2014) Accelerated decline in renal function after acute myocardial infarction in patients with high low-density lipoprotein–cholesterol to high-density lipoprotein-cholesterol ratio. Heart Vessels 29:7–14

    Article  PubMed  Google Scholar 

  9. Joles JA, Koomans HA (2004) Causes and consequences of increased sympathetic activity in renal disease. Hypertension 43:699–706

    Article  CAS  PubMed  Google Scholar 

  10. Ritz E, Adamczak M, Zeier M (2003) Kidney and hypertension-causes. Update 2003. Herz 28:663–667

    Article  PubMed  Google Scholar 

  11. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(2 Suppl 1):S1–S266

    Google Scholar 

  12. Ruster C, Wolf G (2006) Renin–angiotensin–aldosterone system and progression of renal disease. J Am Soc Nephrol 17:2985–2991

    Article  PubMed  Google Scholar 

  13. Berl T, Hunsicker LG, Lewis JB, Pfeffer MA, Porush JG, Rouleau JL, Drury PL, Esmatjes E, Hricik D, Parikh CR, Raz I, Vanhille P, Wiegmann TB, Wolfe BM, Locatelli F, Goldhaber SZ, Lewis EJ (2003) Cardiovascular outcomes in the Irbesartan Diabetic Nephropathy Trial of patients with type 2 diabetes and overt nephropathy. Ann Intern Med 138:542–549

    Article  CAS  PubMed  Google Scholar 

  14. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez MC, Cohen HW, Sealey JE, Laragh JH, Alderman MH (2011) Enduring direct association of baseline plasma renin activity with all-cause and cardiovascular mortality in hypertensive patients. Am J Hypertens 24:1181–1186

    Article  CAS  PubMed  Google Scholar 

  16. Muhlestein JB, May HT, Bair TL, Prescott MF, Horne BD, White R, Anderson JL (2010) Relation of elevated plasma renin activity at baseline to cardiac events in patients with angiographically proven coronary artery disease. Am J Cardiol 106:764–769

    Article  CAS  PubMed  Google Scholar 

  17. Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M (2001) Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 37:429–432

    Article  CAS  PubMed  Google Scholar 

  18. Morimoto A, Uzu T, Fujii T, Nishimura M, Kuroda S, Nakamura S, Inenaga T, Kimura G (1997) Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet 350:1734–1737

    Article  CAS  PubMed  Google Scholar 

  19. Giles TD, Berk BC, Black HR, Cohn JN, Kostis JB, Izzo JL Jr, Weber MA (2005) Expanding the definition and classification of hypertension. J Clin Hypertens (Greenwich) 7:505–512

    Article  Google Scholar 

  20. Campese VM (1994) Salt sensitivity in hypertension. Renal and cardiovascular implications. Hypertension 23:531–550

    Article  CAS  PubMed  Google Scholar 

  21. Imai E, Horio M, Nitta K, Yamagata K, Iseki K, Hara S, Ura N, Kiyohara Y, Hirakata H, Watanabe T, Moriyama T, Ando Y, Inaguma D, Narita I, Iso H, Wakai K, Yasuda Y, Tsukamoto Y, Ito S, Makino H, Hishida A, Matsuo S (2007) Estimation of glomerular filtration rate by the MDRD study equation modified for Japanese patients with chronic kidney disease. Clin Exp Nephrol 11:41–50

    Article  PubMed  Google Scholar 

  22. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982–992

    Article  CAS  PubMed  Google Scholar 

  23. Izawa H, Murohara T, Nagata K, Isobe S, Asano H, Amano T, Ichihara S, Kato T, Ohshima S, Murase Y, Iino S, Obata K, Noda A, Okumura K, Yokota M (2005) Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study. Circulation 112:2940–2945

    CAS  PubMed  Google Scholar 

  24. Tanaka T, Okamura T, Miura K, Kadowaki T, Ueshima H, Nakagawa H, Hashimoto T (2002) A simple method to estimate populational 24-h urinary sodium and potassium excretion using a casual urine specimen. J Hum Hypertens 16:97–103

    Article  CAS  PubMed  Google Scholar 

  25. Kitagawa K, Hougaku H, Yamagami H, Hashimoto H, Itoh T, Shimizu Y, Takahashi D, Murata S, Seike Y, Kondo K, Hoshi T, Furukado S, Abe Y, Yagita Y, Sakaguchi M, Tagaya M, Etani H, Fukunaga R, Nagai Y, Matsumoto M, Hori M (2007) Carotid intima–media thickness and risk of cardiovascular events in high-risk patients. Results of the osaka follow-up study for carotid atherosclerosis 2 (OSACA2 study). Cerebrovasc Dis 24:35–42

    Article  PubMed  Google Scholar 

  26. Latini R, Masson S, Anand I, Salio M, Hester A, Judd D, Barlera S, Maggioni AP, Tognoni G, Cohn JN (2004) The comparative prognostic value of plasma neurohormones at baseline in patients with heart failure enrolled in Val-HeFT. Eur Heart J 25:292–299

    Article  CAS  PubMed  Google Scholar 

  27. Muscholl MW, Schunkert H, Muders F, Elsner D, Kuch B, Hense HW, Riegger GA (1998) Neurohormonal activity and left ventricular geometry in patients with essential arterial hypertension. Am Heart J 135:58–66

    Article  CAS  PubMed  Google Scholar 

  28. Aronow WS, Ahn C, Kronzon I, Gutstein H (1997) Association of plasma renin activity and echocardiographic left ventricular hypertrophy with frequency of new coronary events and new atherothrombotic brain infarction in older persons with systemic hypertension. Am J Cardiol 79:1543–1545

    Article  CAS  PubMed  Google Scholar 

  29. Malmqvist K, Ohman KP, Lind L, Nystrom F, Kahan T (2002) Relationships between left ventricular mass and the renin–angiotensin system, catecholamines, insulin and leptin. J Intern Med 252:430–439

    Article  CAS  PubMed  Google Scholar 

  30. Anavekar NS, Pfeffer MA (2004) Cardiovascular risk in chronic kidney disease. Kidney Int Suppl 92:S11–S15

    Article  Google Scholar 

  31. Tsutamoto T, Wada A, Sakai H, Ishikawa C, Tanaka T, Hayashi M, Fujii M, Yamamoto T, Dohke T, Ohnishi M, Takashima H, Kinoshita M, Horie M (2006) Relationship between renal function and plasma brain natriuretic peptide in patients with heart failure. J Am Coll Cardiol 47:582–586

    Article  CAS  PubMed  Google Scholar 

  32. Endo S, Mori T, Yoneki Y, Nakamichi T, Hosoya T, Ogawa S, Tokudome G, Miyata T, Ito S (2009) Blockade of angiotensin II type-1 receptor increases salt sensitivity in Sprague–Dawley rats. Hypertens Res 32:513–519

    Article  CAS  PubMed  Google Scholar 

  33. Anwaruddin S, Lloyd-Jones DM, Baggish A, Chen A, Krauser D, Tung R, Chae C, Januzzi JL Jr (2006) Renal function, congestive heart failure, and amino-terminal pro-brain natriuretic peptide measurement: results from the PROBNP Investigation of Dyspnea in the Emergency Department (PRIDE) Study. J Am Coll Cardiol 47:91–97

    Article  CAS  PubMed  Google Scholar 

  34. Luchner A, Hengstenberg C, Lowel H, Riegger GA, Schunkert H, Holmer S (2005) Effect of compensated renal dysfunction on approved heart failure markers: direct comparison of brain natriuretic peptide (BNP) and N-terminal pro-BNP. Hypertension 46:118–123

    Article  CAS  PubMed  Google Scholar 

  35. Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, Omland T, Storrow AB, Abraham WT, Wu AH, Clopton P, Steg PG, Westheim A, Knudsen CW, Perez A, Kazanegra R, Herrmann HC, McCullough PA (2002) Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347:161–167

    Article  CAS  PubMed  Google Scholar 

  36. McCullough PA, Kuncheria J, Mathur VS (2004) Diagnostic and therapeutic utility of B-type natriuretic peptide in patients with renal insufficiency and decompensated heart failure. Rev Cardiovasc Med 5(1):16–25

    PubMed  Google Scholar 

  37. Fujita T (2010) Mineralocorticoid receptors, salt-sensitive hypertension, and metabolic syndrome. Hypertension 55:813–818

    Article  CAS  PubMed  Google Scholar 

  38. Graudal NA, Hubeck-Graudal T, Jurgens G (2011) Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev 11:CD004022

    Google Scholar 

  39. Kimura G, Dohi Y, Fukuda M (2010) Salt sensitivity and circadian rhythm of blood pressure: the keys to connect CKD with cardiovascular events. Hypertens Res 33:515–520

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to all of the technicians, nurses, and doctors involve in the treatment of the CKD-specific outpatients for their ongoing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutsuharu Hayashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

380_2016_867_MOESM1_ESM.jpg

Figure S1. Relationships among the PRA level, eGFR, hypertension, and use of RAS inhibitors. A. There was a significant negative correlation between the PRA and eGFR. B. There was a higher PRA level in patients with hypertension than in those without hypertension. C. The administration of RAS inhibitors led to up-regulation of the PRA level. HT: hypertension, RAS: RAS inhibitors (ACE-Is and/or ARBs) (JPEG 75 kb)

380_2016_867_MOESM2_ESM.jpg

Figure S2. Relationships among the BNP level, the renal function, and hypertension. A. There was a higher BNP level in patients with hypertension than in those without hypertension. B. There was a significant negative correlation between the BNP and eGFR. C. There was a significant positive correlation between the BNP and urinary ACR (JPEG 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, M., Yasuda, Y., Suzuki, S. et al. Brain natriuretic peptide as a potential novel marker of salt-sensitivity in chronic kidney disease patients without cardiac dysfunction. Heart Vessels 32, 279–286 (2017). https://doi.org/10.1007/s00380-016-0867-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-016-0867-1

Keywords

Navigation