Skip to main content
Log in

Indications, applications, and outcomes of inferior vena cava filters for venous thromboembolism in Japanese patients

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

A recent multicenter registry study of venous thromboembolism (VTE) patients in Japan demonstrated a high prevalence of inferior vena cava (IVC) filter placement. However, data regarding indications, applications, and outcomes of IVC filters in Japanese patients are quite limited. This study was an observational, single-center, retrospective cohort study of all consecutive patients with acute VTE treated between March 2006 and February 2014. Data extracted included patient demographics, indications, applications, and complications of IVC filters, as well as VTE recurrence and death. A total of 257 consecutive patients were analyzed. Seventy-eight patients (30 %) received IVC filters. The proportions of IVC filter placement were 26 % for deep-vein thrombosis (DVT) alone, 10 % for pulmonary embolism (PE) alone, and 46 % for both DVT and PE. There was no significant difference in patient demographics between the IVC filter group and no-IVC filter group. Stated indications for filter placement were 24 cases (30 %) of DVT in intrapelvic veins, 16 cases (20 %) of DVT in proximal veins, and 11 cases (14 %) of contraindication to anticoagulant therapy. In the IVC filter group, cases of class I indication (guidelines: JCS 75:1258–1281, 2009) numbered only 6 (8 %). Many of the retrievable IVC filters were not removed and placed permanently and the retrieval rate was 42 %. We found complications of IVC filters in 8 cases (10 %). IVC filter placement was significantly associated with a better survival rate and a higher incidence of DVT recurrence during a mean observation period of 541 days. Our research suggests the frequent use of IVC filters for VTE treatment, combined with a low retrieval rate. Most of the stated indications of IVC filter placement for VTE in Japanese patients were cases of DVT in intrapelvic veins or proximal veins, not cases of contraindication to anticoagulant therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tapson VF (2008) Acute pulmonary embolism. N Engl J Med 358:1037–1052

    Article  CAS  PubMed  Google Scholar 

  2. Keller K, Beule J, Coldewey M, Dippold W, Balzer JO (2014) Impact of advanced age on the severity of normotensive pulmonary embolism. Heart Vessels. doi:10.1007/s00380-014-0533-4

    PubMed  Google Scholar 

  3. PREPIC Study Group (2005) Eight-year follow-up of patients with permanent vena cava filters in the prevention of pulmonary embolism: the PREPIC (Prevention du Risque d’Embolie Pulmonaire par Interruption Cave) randomized study. Circulation 112:416–422

    Article  Google Scholar 

  4. Stein PD, Kayali F, Olson RE (2004) Twenty-one-year trends in the use of inferior vena cava filters. Arch Intern Med 164:1541–1545

    Article  PubMed  Google Scholar 

  5. Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P, Bengel F, Brady AJ, Ferreira D, Janssens U, Klepetko W, Mayer E, Remy-Jardin M, Bassand JP (2008) Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur Heart J 29:2276–2315

    Article  CAS  PubMed  Google Scholar 

  6. Jaff MR, McMurtry MS, Archer SL, Cushman M, Goldenberg N, Goldhaber SZ, Jenkins JS, Kline JA, Michaels AD, Thistlethwaite P, Vedantham S, White RJ, Zierler BK (2011) American Heart Association Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; American Heart Association Council on Peripheral Vascular Disease; American Heart Association Council on Arteriosclerosis, Thrombosis and Vascular Biology. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation 123:1788–1830

    Article  PubMed  Google Scholar 

  7. Minichiello T (2011) Efforts to optimize patient benefit from inferior vena cava filters: comment on “Retrieval of inferior vena caval filters after prolonged indwelling time”. Arch Intern Med 171:1955–1956

    Article  PubMed  Google Scholar 

  8. JCS Joint Working Group (2011) Guidelines for the diagnosis, treatment and prevention of pulmonary thromboembolism and deep vein thrombosis (JCS 2009). Circ J 75:1258–1281

    Article  Google Scholar 

  9. Nakamura M, Miyata T, Ozeki Y, Takayama M, Komori K, Yamada N, Origasa H, Satokawa H, Maeda H, Tanabe N, Unno N, Shibuya T, Tanemoto K, Kondo K, Kojima T (2014) Current venous thromboembolism management and outcomes in Japan. Circ J 78:708–717

    Article  PubMed  Google Scholar 

  10. Becker DM, Philbrick JT, Selby JB (1992) Inferior vena cava filters. Indications, safety, effectiveness. Arch Intern Med 152:1985–1994

    Article  CAS  PubMed  Google Scholar 

  11. Girard P, Tardy B, Decousus H (2000) Inferior vena cava interruption: how and when? Annu Rev Med 51:1–15

    Article  CAS  PubMed  Google Scholar 

  12. Decousus H, Leizorovicz A, Parent F, Page Y, Tardy B, Girard P, Laporte S, Faivre R, Charbonnier B, Barral FG, Huet Y, Simonneau G (1998) A clinical trial of vena caval filters in the prevention of pulmonary embolism in patients with proximal deep-vein thrombosis. Prévention du Risque d’Embolie Pulmonaire par Interruption Cave Study Group. N Engl J Med 338:409–415

    Article  CAS  PubMed  Google Scholar 

  13. Laporte S, Mismetti P, Décousus H, Uresandi F, Otero R, Lobo JL, Monreal M (2008) Clinical predictors for fatal pulmonary embolism in 15,520 patients with venous thromboembolism: findings from the Registro Informatizado de la Enfermedad TromboEmbolica venosa (RIETE) Registry. Circulation 117:1711–1716

    Article  PubMed  Google Scholar 

  14. Lee CH, Cheng CL, Lin LJ, Tsai LM, Yang YH (2011) Epidemiology and predictors of short-term mortality in symptomatic venous thromboembolism. Circ J 75:1998–2004

    Article  PubMed  Google Scholar 

  15. White RH, Geraghty EM, Brunson A, Murin S, Wun T, Spencer F, Romano PS (2013) High variation between hospitals in vena cava filter use for venous thromboembolism. JAMA Intern Med 173:506–512

    Article  PubMed  Google Scholar 

  16. Arcelus JI, Caprini JA, Monreal M, Suárez C, González-Fajardo J (2003) The management and outcome of acute venous thromboembolism: a prospective registry including 4011 patients. J Vasc Surg 38:916–922

    Article  PubMed  Google Scholar 

  17. Miyahara T, Miyata T, Shigematsu K, Deguchi J, Kimura H, Ishii S, Nagawa H (2006) Clinical outcome and complications of temporary inferior vena cava filter placement. J Vasc Surg 44:620–624

    Article  PubMed  Google Scholar 

  18. Sarosiek S, Crowther M, Sloan JM (2013) Indications, complications, and management of inferior vena cava filters: the experience in 952 patients at an academic hospital with a level I trauma center. JAMA Intern Med 173:513–517

    Article  PubMed  Google Scholar 

  19. Angel LF, Tapson V, Galgon RE, Restrepo MI, Kaufman J (2011) Systematic review of the use of retrievable inferior vena cava filters. J Vasc Interv Radiol 22:1522–1530

    Article  PubMed  Google Scholar 

  20. Ray CE Jr, Mitchell E, Zipser S, Kao EY, Brown CF, Moneta GL (2006) Outcomes with retrievable inferior vena cava filters: a multicenter study. J Vasc Interv Radiol 17:1595–1604

    Article  PubMed  Google Scholar 

  21. Mission JF, Kerlan RK Jr, Tan JH, Fang MC (2010) Rates and predictors of plans for inferior vena cava filter retrieval in hospitalized patients. J Gen Intern Med 25:321–325

    Article  PubMed  PubMed Central  Google Scholar 

  22. Minocha J, Idakoji I, Riaz A, Karp J, Gupta R, Chrisman HB, Salem R, Ryu RK, Lewandowski RJ (2010) Improving inferior vena cava filter retrieval rates: impact of a dedicated inferior vena cava filter clinic. J Vasc Interv Radiol 21:1847–1851

    Article  PubMed  Google Scholar 

  23. Crochet DP, Brunel P, Trogrlic S, Grossetëte R, Auget JL, Dary C (1999) Long-term follow-up of Vena Tech-LGM filter: predictors and frequency of caval occlusion. J Vasc Interv Radiol 10:137–142

    Article  CAS  PubMed  Google Scholar 

  24. Andreoli JM, Lewandowski RJ, Vogelzang RL, Ryu RK (2014) Comparison of complication rates associated with permanent and retrievable inferior vena cava filters: a review of the MAUDE database. J Vasc Interv Radiol 25:1181–1185

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaharu Akao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita, Y., Unoki, T., Takagi, D. et al. Indications, applications, and outcomes of inferior vena cava filters for venous thromboembolism in Japanese patients. Heart Vessels 31, 1084–1090 (2016). https://doi.org/10.1007/s00380-015-0709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-015-0709-6

Keywords

Navigation