Skip to main content
Log in

Urinary KIM-1, NGAL and L-FABP for the diagnosis of AKI in patients with acute coronary syndrome or heart failure undergoing coronary angiography

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Acute kidney injury (AKI) is a common complication after coronary angiography. Early biomarkers of this disease are needed since increase in serum creatinine levels is a late marker. To assess the usefulness of urinary kidney injury molecule-1 (uKIM-1), neutrophil gelatinase-associated lipocalin (uNGAL) and liver-type fatty acid-binding protein (uL-FABP) for early detection of AKI in these patients, comparing their performance with another group of cardiac surgery patients. Biomarkers were measured in 193 patients, 12 h after intervention. In the ROC analysis, AUC for KIM-1, NGAL and L-FABP was 0.713, 0.958 and 0.642, respectively, in the coronary angiography group, and 0.716, 0.916 and 0.743 in the cardiac surgery group. Urinary KIM-1 12 h after intervention is predictive of AKI in adult patients undergoing coronary angiography, but NGAL shows higher sensitivity and specificity. L-FABP provides inferior discrimination for AKI than KIM-1 or NGAL in contrast to its performance after cardiac surgery. This is the first study showing the predictive capacity of KIM-1 for AKI after coronary angiography. Further studies are still needed to answer relevant questions about the clinical utility of biomarkers for AKI in different clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carbonell N, Blasco M, Sanjuán R, Pérez-Sancho E, Sanchis J, Insa L, Bodí V, Núñez J, García-Ramón R, Miguel A (2007) Intravenous N-acetylcysteine for preventing contrast-induced nephropathy: a randomised trial. Int J Cardiol 115:57–62

    Article  PubMed  Google Scholar 

  2. McCullough PA (2008) Contrast-induced acute kidney injury. J Am Coll Cardiol 51:1419–1428

    Article  PubMed  Google Scholar 

  3. Marenzi G, De Metrio M, Rubino M, Lauri G, Cavallero A (2010) Acute hyperglycemia and contrast-induced nephropathy in primary percutaneous coronary intervention. Am Heart J 160:1170–1177

    Article  PubMed  Google Scholar 

  4. Matejka J, Varvarovsky I, Vojtisek P, Herman A, Rozsival V, Borkova V, Kvasnicka J (2010) Prevention of contrast-induced acute kidney injury by theophylline in elderly patients with chronic kidney disease. Heart Vessels 25:536–542

    Article  PubMed  Google Scholar 

  5. Ogita M, Sakakura K, Nakamura T, Funayama H, Wada H, Naito R, Sugawara Y, Kubo N, Ako J, Momomura S (2012) Association between deteriorated renal function and long-term clinical outcomes after percutaneous coronary intervention. Heart Vessels 27:460–467

    Article  PubMed  Google Scholar 

  6. Rosner MH, Okusa MD (2006) Acute kidney injury associated with cardiac surgery. Clin J Am Soc Nephrol 1:19–32

    Article  PubMed  Google Scholar 

  7. Del Duca D, Iqbal S, Rahme E, Goldberg P, De Varennes B (2007) Renal failure after cardiac surgery: timing of cardiac catheterization and other perioperative risk factors. Ann Thorac Surg 84:1264–1271

    Article  PubMed  Google Scholar 

  8. Karkouti K, Wijeysundera DN, Yau TM, Callum JL, Cheng DC (2009) Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation 119:495–502

    Article  PubMed  Google Scholar 

  9. Mariscalco G, Nicolini F, Scannapieco A, Gherli R, Serraino F, Dominici C, Renzulli A, Gherli T, Sala A, Beghi C (2013) Acute kidney injury after composite valve-graft replacement for ascending aorta aneurysms. Heart Vessels 28:229–236

    Article  PubMed  Google Scholar 

  10. Lassnigg A, Schmidlin D, Mouhieddine M (2004) Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol 15:1597–1605

    Article  CAS  PubMed  Google Scholar 

  11. Stevens LA, Coresh J, Greene T, Levey AS (2006) Assessing kidney function. Measured and estimated glomerular filtration rate. N Engl J Med 354:2473–2483

    Article  CAS  PubMed  Google Scholar 

  12. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K (2003) Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14:2534–2543

    Article  CAS  PubMed  Google Scholar 

  13. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365:1231–1238

    Article  CAS  PubMed  Google Scholar 

  14. Haase M, Bellomo R, Devarajan P, Schlattmann P, Anja Haase-Fielitz A, the NGAL Meta-analysis Investigator Group (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54:1012–1024

    Article  CAS  PubMed  Google Scholar 

  15. McIlroy DR, Wagener G, Lee HT (2010) Neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery: the effect of baseline renal function on diagnostic performance. Clin J Am Soc Nephrol 5:211–219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Parikh CR, Devarajan P, Zappitelli M, Sint K, Thiessen-Philbrook H, Li S, Kim RW, Koyner JL, Coca SG, Edelstein CL, Shlipak MG, Garg AX, Krawczeski CD, TRIBE-AKI Consortium (2011) Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J Am Soc Nephrol 22:1737–1747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Parikh CR, Coca SG, Thiessen-Philbrook H, Shlipak MG, Koyner JL, Wang Z, Edelstein CL, Devarajan P, Patel UD, Zappitelli M, Krawczeski CD, Passik CS, Swaminathan M, Garg AX, TRIBE-AKI Consortium (2011) Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol 22:1748–1757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Torregrosa I, Montoliu C, Urios A, Elmlili N, Puchades MJ, Solís MA, Sanjuán R, Blasco ML, Ramos C, Tomás P, Ribes J, Carratalá A, Juan I, Miguel A (2012) Early biomarkers of acute kidney failure after heart angiography or heart surgery in patients with acute coronary syndrome or acute heart failure. Nefrologia 32:44–52

    PubMed  Google Scholar 

  19. Liu S, Che M, Xue S, Xie B, Zhu M, Lu R, Zhang W, Qian J, Yan Y (2013) Urinary L-FABP and its combination with urinary NGAL in early diagnosis of acute kidney injury after cardiac surgery in adult patients. Biomarkers 18:95–101

    Article  CAS  PubMed  Google Scholar 

  20. Bachorzewska-Gajewska H, Poniatowski B, Dobrycki S (2009) NGAL (neutrophil gelatinase-associated lipocalin) and L-FABP after percutaneous coronary interventions due to unstable angina in patients with normal serum creatinine. Adv Med Sci 54:221–224

    Article  CAS  PubMed  Google Scholar 

  21. Malyszko J, Bachorzewska-Gajewska H, Poniatowski B, Malyszko JS, Dobrzycki S (2009) Urinary and serum biomarkers after cardiac catheterization in diabetic patients with stable angina and normal serum creatinine. Ren Fail 31:910–919

    Article  CAS  PubMed  Google Scholar 

  22. Tasanarong A, Hutayanon P, Piyayotai D (2013) Urinary neutrophil gelatinase-associated lipocalin predicts the severity of contrast-induced acute kidney injury in chronic kidney disease patients undergoing elective coronary procedures. BMC Nephrol 14:270

    Article  PubMed Central  PubMed  Google Scholar 

  23. Parikh CR, Thiessen-Philbrook H, Garg AX, Kadiyala D, Shlipak MG, Koyner JL, Edelstein CL, Devarajan P, Patel UD, Zappitelli M, Krawczeski CD, Passik CS, Coca SG, TRIBE-AKI Consortium (2013) Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin J Am Soc Nephrol 8:1079–1088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Shao X, Tian L, Xu W, Zhang Z, Wang C, Qi C, Ni Z, Mou S (2014) Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis. PLoS ONE 9:e84131

    Article  PubMed Central  PubMed  Google Scholar 

  25. Susantitaphong P, Siribamrungwong M, Doi K, Noiri E, Terrin N, Jaber BL (2013) Performance of urinary liver-type fatty acid-binding protein in acute kidney injury: a meta-analysis. Am J Kidney Dis 61:430–439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Katoh H, Nozue T, Kimura Y, Nakata S, Iwaki T, Kawano M, Kawashiri MA, Michishita I, Yamagishi M (2014) Elevation of urinary liver-type fatty acid-binding protein as predicting factor for occurrence of contrast-induced acute kidney injury and its reduction by hemodiafiltration with blood suction from right atrium. Heart Vessels 29:191–197

    Article  PubMed  Google Scholar 

  27. Fujita D, Takahashi M, Doi K, Abe M, Tazaki J, Kiyosue A, Myojo M, Ando J, Fujita H, Noiri E, Sugaya T, Hirata Y, Komuro I (2014) Response of urinary liver-type fatty acid-binding protein to contrast media administration has a potential to predict one-year renal outcome in patients with ischemic heart disease. Heart Vessels. doi:10.1007/s00380-014-0484-9

    Google Scholar 

  28. Vanmassenhove J, Vanholder R, Nagler E, Van Biesen W (2013) Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature. Nephrol Dial Transplant 28:254–273

    Article  CAS  PubMed  Google Scholar 

  29. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, the ADQI Workgroup (2004) Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit Care 8:R204–R212

    Article  PubMed Central  PubMed  Google Scholar 

  30. World Medical Association (1997) Declaration of Helsinki: recommendations guiding medical physicians in biomedical research involving human subjects. JAMA 277:925–926

  31. Malyszko J, Bachorzewska-Gajewska H, Malyszko JS, Pawlak K, Dobrzycki S (2008) Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in hypertensive and normotensive patients with coronary artery disease. Nephrology (Carlton) 13:153–156

    Article  CAS  Google Scholar 

  32. Przybylowski P, Malyszko J, Malyszko J (2010) Kidney function assessed by eGFR, cystatin C and NGAL (neutrophil gelatinase-associated lipocalin) in relation to age in heart allograft recipients. Med Sci Monit 16:440–444

    Google Scholar 

  33. Martensson J, Bell M, Oldner A, Xu S, Venge P, Martling CR (2010) Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury. Intensiv Care Med 36:1333–1340

    Article  CAS  Google Scholar 

  34. Koyner JL, Vaidya VS, Bennett MR, Ma Q, Worcester E (2010) Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin J Am Soc Nephrol 5:2154–2165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Ma X, Zhang BR, Li DT (2011) Value of urinary kidney injury molecule-1 protein in early diagnosis of radiocontrast- induced nephropathy in rats. Nan Fang Yi Ke Da Xue Xue Bao 31:357–360

    PubMed  Google Scholar 

  36. Ralib AM, Pickering JW, Shaw GM, Devarajan P, Edelstein CL, Bonventre JV, Endre ZH (2012) Test characteristics of urinary biomarkers depend on quantitation method in acute kidney injury. J Am Soc Nephrol 23:322–333

    Article  CAS  PubMed  Google Scholar 

  37. Singer E, Elger A, Elitok S, Kettritz R, Nickolas TL, Barasch J, Luft FC, Schmidt-Ott KM (2011) Urinary neutrophil gelatinase-associated lipocalin distinguishes pre-renal from intrinsic renal failure and predicts outcomes. Kidney Int 80:405–414

    Article  CAS  PubMed  Google Scholar 

  38. Doi K, Katagiri D, Negishi K, Hasegawa S, Hamasaki Y, Fujita T, Matsubara T, Ishii T, Yahagi N, Sugaya T, Noiri E (2012) Mild elevation of urinary biomarkers in prerenal acute kidney injury. Kidney Int 82:1114–1120

    Article  CAS  PubMed  Google Scholar 

  39. Nejat M, Pickering JW, Devarajan P, Bonventre JV, Edelstein CL, Walker RJ, Endre ZH (2012) Some biomarkers of acute kidney injury are increased in pre-renal acute injury. Kidney Int 81:1254–1262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from Ministerio de Ciencia e Innovacion of Spain [PS09/00806 (CM), PI10/01434 (AM) and PI12/00884 (CM)] co-financing by the European Fund for Regional Development (FEDER); from Consellería de Educación de la Generalitat Valenciana (ACOMP/2009/191 and ACOMP/2012/056 to CM) and Sanitat (AP-028/10, AP-087/11 to CM). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isidro Torregrosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torregrosa, I., Montoliu, C., Urios, A. et al. Urinary KIM-1, NGAL and L-FABP for the diagnosis of AKI in patients with acute coronary syndrome or heart failure undergoing coronary angiography. Heart Vessels 30, 703–711 (2015). https://doi.org/10.1007/s00380-014-0538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-014-0538-z

Keywords

Navigation