Skip to main content
Log in

Heat budget of the south-central equatorial Pacific in CMIP3 models

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Using data from 17 coupled models and nine sets of corresponding Atmospheric Model Intercomparison Project (AMIP) results, we investigated annual and seasonal variation biases in the upper 50 m of the south-central equatorial Pacific, with a focus on the double-ITCZ bias, and examined the causes for the amplitude biases by using heat budget analysis. The results showed that, in the research region, most of the models simulate SSTs that are higher than or similar to observed. The simulated seasonal phase is close to that observed, but the amplitudes of more than half of the model results are larger than or equal to observations. Heat budget analysis demonstrated that strong shortwave radiation in individual atmospheric models is the main factor that leads to high SST values and that weak southward cold advection is an important mechanism for maintaining a high SST. For seasonal circulation, large surface shortwave radiation amplitudes cause large SST amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeor., 4, 1147–1167.

    Article  Google Scholar 

  • Bellucci, A., S. Gualdi, and A. Navarra, 2010: The double-ITCZ syndrome in coupled general circulation models: The role of large-scale vertical circulation regimes. J. Climate, 23, 1127–1145.

    Article  Google Scholar 

  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017.

    Article  Google Scholar 

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model Version 3 (CCSM3). J. Climate, 19, 2122–2143.

    Article  Google Scholar 

  • Delworth, T. L. and Coauthors, 2006: GFDL’s CM2 global coupled climate models-Part 1: Formulation and simulation characteristics. J. Climate, 19(5), 643–674.

    Article  Google Scholar 

  • de Szoeke, S. P., and S. P. Xie, 2008: The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean-atmosphere general circulation models. J. Climate, 21, 2573–2590.

    Article  Google Scholar 

  • Gent, P. R., and Coauthors, 2011: The community climate system model version 4. J. Climate, 24, 4973–4991.

    Article  Google Scholar 

  • Gordon, C., C. Cooper, C.A. Senior, H. T. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147–168.

    Article  Google Scholar 

  • Gordon, H. B., and Coauthors, 2002: The CSIRO Mk3 Climate System Model. CSIRO Atmospheric Research technical paper, No. 60, 130 pp.

    Google Scholar 

  • Grist, J. P., and S. A. Josey, 2003: Inverse analysis adjustment of the SOC air-sea flux climatology using ocean heat transport constraints. J. Climate, 16, 3274–3295.

    Article  Google Scholar 

  • Gualdi, S., E. Scoccimarro, and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 5204–5228.

    Article  Google Scholar 

  • Gulev, S., T. Jung, and E. Ruprecht, 2007: Estimation of the impact of sampling errors in the VOS observations on air-sea fluxes. Part I. Uncertainties in climate means. J. Climate, 20, 279–301.

    Article  Google Scholar 

  • Hasumi H., and S. Emori, 2004: K-1 coupled model (MIROC) description, K-1 technical report 1, Center for Climate System Research, University of Tokyo, 34pp. [Available online at http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/techrepo.pdf

    Google Scholar 

  • Johns, T. C., and Coauthors, 2006, The new Hadley Centre climate model HadGEM1: Evaluation of coupled simulations. J. Climate, 19, 1327–1353.

    Article  Google Scholar 

  • Jungclaus, J.H., and Coauthors, 2006: Ocean circulation and tropical variability in the AOGCM ECHAM5/MPI-OM. J. Climate, 19, 3952–3972.

    Article  Google Scholar 

  • Kent, E. C., and D. I. Berry, 2005: Quantifying random measurement errors in voluntary observing ships’ meteorological observations. Int. J. Climatol., 25, 843–856, doi: 10.1002/joc.1167.

    Article  Google Scholar 

  • Large, W. G., and S. G. Yeager, 2008: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 24, 341–364, doi: 10.1007/s00382-008-0441-3.

    Google Scholar 

  • Lee, T., I. Fukumori, and B. Y. Tang, 2004: Temperature advection: Internal versus external processes. J. Phys. Oceanogr., 34, 1936–1944.

    Article  Google Scholar 

  • Li, J. L., X. H. Zhang, Y. Q. Yu, and F. S. Dai, 2003: Double ITCZ phenomenon and analysis of its heat budget in a coupled ocean-atmosphere general circulation model. Acta Meteorologica Sinica, 61, 39–51. (in Chinese)

    Google Scholar 

  • Lin, J. L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMS: ocean-atmosphere feedback analysis. J. Climate, 20(18), 4497–4525.

    Article  Google Scholar 

  • Liu, H. L., W. Y. Lin, and M. H. Zhang, 2010: Heat budget of the upper ocean in the south-central equatorial Pacific. J. Climate, 23(7), 1779–1792.

    Article  Google Scholar 

  • Liu, H. L., M. H. Zhang, and W. Y. Lin, 2012: An Investigation of the Initial Development of the Double-ITCZ Warm SST Biases in the CCSM. J. Climate, 25(1), 140–155.

    Article  Google Scholar 

  • Ma, C. C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean-atmosphere GCM study. J. Climate, 9, 1635–1645.

    Article  Google Scholar 

  • Marti, O., and Coauthors, 2005: The new IPSL climate system model: IPSL-CM4, Note du Pôle de Modêlisation, IPSL, 26, 1–86.

    Google Scholar 

  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Mon. Wea. Rev., 123, 3825–3838.

    Article  Google Scholar 

  • Meehl, G. A., W. M. Washington, C. Ammann, J. M. Arblaster, T. M. L. Wigley, and C. Tebaldi, 2004: Combinations of natural and anthropogenic forcings and 20th century climate. J. Climate, 17, 3721–3727.

    Article  Google Scholar 

  • Rosati, A., and K. Miyakoda, 1988: A general circulation model for upper ocean simulation. J. Phys. Oceanogr., 18, 1601–1626.

    Article  Google Scholar 

  • Russell, G. L., J. R. Miller, and D. Rind, 1995: A coupled atmosphere-ocean model for transient climate change studies. Atmos.-Ocean, 33(4), 683–730.

    Article  Google Scholar 

  • Salas-Mélia D., and Coauthors, 2005: Description and validation of the CNRM-CM3 global coupled model. CNRM working note 103, 36 pp.

    Google Scholar 

  • Song, X. Z., and L. S. Yu, 2012: High-latitude contribution to global variability of air-sea sensible heat flux. J. Climate, 25(10), 3515–3531. doi: 10.1175/JCLI-D-11-00028.1.

    Article  Google Scholar 

  • Schmidt, G. A., and Coauthors, 2006: Present day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite and reanalysis data. J. Climate, 19, 153–192.

    Article  Google Scholar 

  • Xu, Y., Z. C. Zhao, Y. Luo, and X. J. Gao 2005: Climate change projections for the 21st century by the NCC/IAP T63 model with SRES scenarios. Acta Meteorologica Sinica, 19, 407–417.

    Google Scholar 

  • Yu, L. S., 2007: Global variations in oceanic evaporation (1958-2005): The role of the changing wind speed. J. Climate, 20, 5376–5390, doi: 10.1175/2007JCLI1714.1.

    Article  Google Scholar 

  • Yu, L. S., and R. A. Weller, 2007: Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88(4), 527–539, doi: 10.1175/BAMS-88-4-527.

    Article  Google Scholar 

  • Yu, Y. Q., X. H. Zhang, and Y. F. Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444–455.

    Article  Google Scholar 

  • Zhang, G. J., and X. L. Song, 2010: Convection parameterization, tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part II: Coupled feedback and the role of ocean heat transport. J. Climate, 23, 800–812.

    Article  Google Scholar 

  • Zhang, X. H., W. Y. Lin, and M. H. Zhang, 2007: Toward understanding the double Intertropical Convergence Zone pathology in coupled ocean-atmosphere general circulation models. J. Geophys. Res., 112(D12), doi: 10.1029/2006JD007878.

    Google Scholar 

  • Zhang, Y. C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi: 10.1029/2003JD004457.

    Article  Google Scholar 

  • Zheng, Y. X., T. Shinoda, J. L. Lin, and G. N. Kiladis, 2011: Sea surface temperature biases under the stratus cloud deck in the southeast Pacific Ocean in 19 IPCC AR4 coupled general circulation models. J. Climate, 24(15), 4139–4164.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Liu, H. Heat budget of the south-central equatorial Pacific in CMIP3 models. Adv. Atmos. Sci. 31, 669–680 (2014). https://doi.org/10.1007/s00376-013-2299-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2299-5

Key words

Navigation