Skip to main content
Log in

The impact of global warming on the pacific decadal oscillation and the possible mechanism

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The response of the Pacific Decadal Oscillation (PDO) to global warming according to the Fast Ocean Atmosphere Model (FOAM) and global warming comparison experiments of 11 IPCC AR4 models is investigated. The results show that North Pacific ocean decadal variability, its dominant mode (i.e., PDO), and atmospheric decadal variability, have become weaker under global warming, but with PDO shifting to a higher frequency. The SST decadal variability reduction maximum is shown to be in the subpolar North Pacific Ocean and western North Pacific (PDO center). The atmospheric decadal variability reduction maximum is over the PDO center.

It was also found that oceanic baroclinic Rossby waves play a key role in PDO dynamics, especially those in the subpolar ocean. As the frequency of ocean buoyancy increases under a warmer climate, oceanic baroclinic Rossby waves become faster, and the increase in their speed ratio in the high latitudes is much larger than in the low latitudes. The faster baroclinic Rossby waves can cause the PDO to shift to a higher frequency, and North Pacific decadal variability and PDO to become weaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, S.-I., and B. Wang, 1999: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 2044–2055.

    Article  Google Scholar 

  • Biondi, F., G. Alexander, and D. R. Cayan, 2001: North Pacific decadal climate variability since 1661. J. Climate, 14, 5–10.

    Article  Google Scholar 

  • Chelton, D. B., and M. Schlax, 1996: Global observations of oceanic rossby waves. Science, 272, 234–238.

    Article  Google Scholar 

  • Chelton, D. B, R. A. DeSzoeke, M. G. Schlax, K. E. Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic rossby radius of deformation. J. Climate, 28, 433–460.

    Google Scholar 

  • D’Arrigo, R., R. Villalba, and G. Wiles, 2001: Tree-ring estimate of pacific decadal climate variability. Climate Dyn., 18, 219–224.

    Article  Google Scholar 

  • Deser, C., A. S. Phillips, and J W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17, 3109–3124.

    Article  Google Scholar 

  • D’Orgeville, M., and W. R. Peltier, 2009: Implications of both statistical equilibrium and global warming simulations with CCSM3. Part I: On the decadal variability in the North Pacific basin. J. Climate, 22, 5277–5297.

    Article  Google Scholar 

  • Gershunov, A., and T. P. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 2715–2725.

    Article  Google Scholar 

  • Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805–807.

    Article  Google Scholar 

  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean-atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325–340.

    Article  Google Scholar 

  • Hu, Z.-Z., and B. Huang, 2009: Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains. J. Climate, 22, 6047–6065.

    Article  Google Scholar 

  • Huang, R. H., R. S. Cai, J. L. Chen, and L. T. Zhou, 2006: Interdecaldal variations of drought and flooding disasters in China and their association with the East Asian Climate System. Chinese J. Atmos. Sci., 30, 730–743.

    Google Scholar 

  • Jacob, R. L., 1997: Low frequency variability in a simulated atmosphere-ocean system. Ph.D. dissertation, Dept. of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, 155 pp.

    Google Scholar 

  • Jacobs, G. A., H. E. Hurlburt, J. C. Kindle, E. J. Metzger, J. L. Mitchell, W. J. Teague, and A. J. Wallcraft, 1994: Decadescale trans-Pacific propagation and warming effects of an El Niño anomaly. Nature, 370, 360–363.

    Article  Google Scholar 

  • Killworth, P. D., R. De Szoeke, and D. Chelton, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27, 1946–1966.

    Article  Google Scholar 

  • Kleeman, R., J. P. McCreary Jr., and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26, 1743–1746.

    Article  Google Scholar 

  • Kwon, Y. O., and C. Deser, 2007: North Pacific decadal variability in the community climate system model version 2. J. Climate, 20, 2416–2433.

    Article  Google Scholar 

  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634–637.

    Article  Google Scholar 

  • Latif, M., and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9, 2407–2423.

    Article  Google Scholar 

  • Liu, Z., L. Wu, R. Gallimore, and R. Jacob, 2002: Search for the origins of Pacific decadal climate variability. Geophys. Res. Lett., 29(10), 1404, doi: 10.1029/2001GL013735.

    Article  Google Scholar 

  • Mann, M. E., and J. M. Lees, 1996: Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33, 409–445.

    Article  Google Scholar 

  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. Journal of Oceanography, 58, 35–44.

    Article  Google Scholar 

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallance, and R. C. Francis, 1997: A Pacific decadal climate oscillation with impacts on salmon. Bull. Amer. Metetor. Soc., 78, 1069–1079.

    Article  Google Scholar 

  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394.

    Article  Google Scholar 

  • Merryfield, W. J., 2006: Changes to ENSO under CO2 doubling in a multimodel ensemble. J. Climate, 19, 4009–4027.

    Article  Google Scholar 

  • Miller, A. J., and N. Schneider, 2000: Interdecadal climate regime dynamics in the North Pacific Ocean: theories, observations and ecosystem impacts. Progress in Oceanography, 47, 355–379.

    Article  Google Scholar 

  • Miller, A. J., F. Chai, S. Chiba, J. R. Moisan, and D. J. Neilson, 2004: Decadal-scale climate and ecosystem interactions in the North Pacific Ocean. Journal of Oceanography, 60, 163–188.

    Article  Google Scholar 

  • Minobe, S., 1999: Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys. Res. Lett., 26, 855–858.

    Article  Google Scholar 

  • Münnich, M., M. Latif, S. Venzke, and E. Maier-Reimer, 1998: Decadal oscillations in a simple coupled model. J. Climate, 11, 3309–3319.

    Article  Google Scholar 

  • Pierce, D. W., T. P. Barnett, N. Schneider, R. Saravanan, D. Dommenget, and M. Latif, 2001: The role of ocean dynamics in producing decadal climate variability in the North Pacific. Climate Dyn., 18, 51–70.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407–4443, doi: 10.1029/2002JD002670.

    Article  Google Scholar 

  • Saenko, O. A., 2006: Influence of global warming on baroclinic rossby radius in the ocean: A model intercomparison. J. Climate, 19, 1354–1360.

    Article  Google Scholar 

  • Saravanan, R., and J. C. McWilliams, 1998: Advective oceanatmosphere interaction: An analytical stochastic model with implications for decadal variability. J. Climate, 11, 165–188.

    Article  Google Scholar 

  • Sato, Y., S. Yukimoto, H. Tsujino, H. Ishizaki, and A. Noda, 2006: Response of North Pacific ocean circulation in a Kuroshio-resolving ocean model to an arctic oscillation (AO)-like change in Northern Hemisphere atmospheric circulation due to greenhouse-gas forcing. J. Meteor. Soc. Japan, 84, 295–309.

    Article  Google Scholar 

  • Schmittner, A., M. Latif, and B. Schneider, 2005: Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett., 32, L23710, doi: 10.1029/2005GL024368.

    Article  Google Scholar 

  • Seager, R., Y. Kushnir, N. H. Naik, M. A. Cane, and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio-Oyashio extension and generation of SST anomalies on decadal timescales. J. Climate, 14, 4249–4265.

    Article  Google Scholar 

  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 1365–1387.

    Article  Google Scholar 

  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphereocean variations in the Pacific. Climate Dyn., 9, 303–319.

    Article  Google Scholar 

  • Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8, 267–285.

    Article  Google Scholar 

  • Wu, L., and Z. Liu, 2003: Decadal variability in the North Pacific: The eastern orth Pacific mode. J. Climate, 16, 3111–3131.

    Article  Google Scholar 

  • Wu, L., Z. Liu, R. Gallimore, R. Jacob, D. Lee, and Y. Zhong, 2003: Pacific decadal variability: The tropical pacific mode and the North Pacific mode. J. Climate, 16, 1101–1120.

    Article  Google Scholar 

  • Wu, L., Z. Liu, C. Li, and Y. Sun., 2007: Extratropical control of recent tropical Pacific decadal climate variability: A relay teleconnection. Climate Dyn., 28, doi: 10.1027/s00382-006-0198-5.

    Google Scholar 

  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi: 10.1029/2005GL023684.

    Article  Google Scholar 

  • Zhong, Y., and Z. Liu, 2009: On the mechanism of pacific multidecadal climate variability in CCSM3: The role of the subpolar North Pacific ocean. J. Phys. Oceanogr., 39, 2052–2076.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfang Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, C., Wu, L. & Zhang, X. The impact of global warming on the pacific decadal oscillation and the possible mechanism. Adv. Atmos. Sci. 31, 118–130 (2014). https://doi.org/10.1007/s00376-013-2260-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2260-7

Key words

Navigation